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Abstract—Job Shop Scheduling is a problem to schedule n 

number of jobs in m number of machines with a different 

order of processing. Each machine processes exactly one job 

at a time. Each job will be processed in every machine once. 

When a machine is processing one particular job then the 

other machine can’t process the same job. Different 

schedule’s order might produce different total processing 

time. The result of this scheduling problem will be total 

processing time and schedule’s order. This paper uses clonal 

selection as the algorithm to solve this problem. The clonal 

selection algorithm comes from the concept of an artificial 

immune system. It's developed by copying a human’s 

immune system behavior. A human’s immune system can 

differentiate foreign objects and eliminate the objects by 

creating an antibody. An antibody will go to a cloning 

process and will mutate to further enhance itself. Clonal 

selection algorithm applies this cloning and mutation 

principle to find the most optimal solution. The goal is to 

find the best schedule’s order and makespan. Taillard’s 

benchmark is used to verify the quality of the result. To 

compare the result, we use two values: the upper bound and 

the lower bound. The upper bound is used to describe the 

best result of a scheduling problem that has been conducted 

using a certain environment. On the contrary, the lower 

bound shows the worst. Experiments on changing the 

algorithm's parameters are also conducted to measure the 

quality of the program. The parameters are the number of 

iterations, mutations, and clone numbers. According to the 

experiment's results, the higher the number of iteration, 

mutation rate, and clone number, the better solution for the 

problem. Clonal selection algorithm has not been able to 

keep up with upper bound or lower bound values from 

Taillard’s case. Therefore, parameters need to be increased 

significantly to increase the chance to produce the optimum 

result. The higher number of parameters used means the 

longer time needed to produce the result. 

 

 

Index Terms—job shop scheduling, artificial immune system, 

clonal selection, Tailard’s benchmark 

 

I. INTRODUCTION 

Scheduling is a problem of assigning resources to a 

range of time so that some objectives functions are 

optimized. In general, scheduling is needed in many 

fields. With scheduling, we can measure what we can 

realistically achieve in a given time period and forecast 

the finish time of a given job in the queue [1]. In this 

paper, we discuss the job shop scheduling problem which 
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will be explained in more detail in the following section. 

We’ve done some research related to the scheduling 

problem [2]-[8]. In this paper, clonal selection algorithm 

is used to solve the job shop scheduling problem. 

II. JOB SHOP SCHEDULING PROBLEM 

This research’s goal is to solve the job shop scheduling 

problem. It’s an optimization problem to assign n jobs to 

m number of machines with different order of processing. 

Given n jobs: 𝐽 = {𝐽1, 𝐽2, 𝐽3, . . . , 𝐽𝑛} with various 

processing times to be assigned on m machines 𝑀 =
{𝑀1, 𝑀2, 𝑀3, . . . , 𝑀𝑚} . The order of the process can be 

various for each job. Each job is processed in every 

machine exactly once. Each job (𝐽𝑖) consist of a set of 

operations 𝑂𝑖1, 𝑂𝑖2, 𝑂𝑖3, . . . , 𝑂𝑖𝑛 . Each operation has 

different processing time 𝑃𝑇𝑖𝑗 , which denotes the 

processing time of job i at machine j. The goal is to find a 

schedule with minimum makespan. Makespan is the total 

time needed until all of these jobs are finished to be 

processed in these machines [9]. 

Job shop scheduling can be visualized using a gantt 

chart to manually calculate the makespan. Fig. 1 shows 

an example of a gantt chart that processes 3 jobs at 3 

machines with different processing orders. As can be seen 

at Fig. 1, the processing order for job 1 (J1) is: machine 2 

- machine 1 - machine 3. Job 2 (J2) is processed with 

different orders: machine 3 - machine 2 - machine 1. Job 

3 (J3) is processed in machine 1 - machine 3 - machine 2. 

Notice there are some gaps between J2 in machine 3 and 

J3 in machine 3. The reason J3 cannot be started at 

machine 3 at time 1 is because it hasn’t finished yet to be 

processed in machine 1. J3 just finished to be processed 

in machine 1 at time 4, then it can be continued to the 

next machine (machine3) at time 4.  

 

Figure 1.  Illustration of Job Shop Scheduling Problem. 

Table I shows the same example in a tabular form. 

This table shows the order of machines for each job with 
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each processing time. Each row in the table shows the 

processing order for each job. 

TABLE I.  PROCESSING TIME TABLE OF FIGURE 1 

 

Job 

Operation i1 Operation i2 Operation i3 

Time Machine Time Machine Time Machine 

J1 3 2 3 1 2 3 

J2 1 3 2 2 3 1 

J3 4 1 2 3 1 2 

III. CLONAL SELECTION 

A. Artificial Immune System 

Artificial immune system is a collection of techniques 

that mimics natural immune responses that defend the 

body from foreign pathogens (nonself-antigen) [10]. T-

cell and B-cell are part of lymphocytes that respond to 

specific antigens invading the body. T-cell detects foreign 

pathogens and gives an order to B-cell to eliminate them. 

Inspired by immunology, artificial immune systems have 

been applied to real-world science and engineering 

problems, such as job shop scheduling. 

Fig. 2 shows an illustration of the antigen elimination 

process, which is called clonal selection. After antigens 

have been detected by T-cell, B-cell creates antibodies 

that destroy nonself-antigen. B-cell multiplies the 

production of identical clones of antibodies by combining 

each structure with the others. This concept is called the 

antibody library which is used in the artificial immune 

system. 

 

Figure 2.  Clonal selection process. 

B. Antibody Library 

The antibody library is a collection of partial solutions 

that forms the antibody (see Fig. 3). An antibody library 

consists of several components (denotes as 𝐶𝑖 ). Each 

component consists of the same number of genes for each 

library. These genes are randomly generated and have 

different values for each component. The length of a 

component is usually obtained by dividing the length of 

an antibody with a certain integer number. A gene in a 

component can model any kind of information, such as a 

number or a letter [11]. 

Fig. 3 (bottom) shows a new antibody that is formed 

by selecting some random components from the library. 

In Fig. 3 (bottom), an antibody with length 15 is divided 

into 3 parts with equal length. The length of each part is 

equal to the length of a library component. In this figure, 

a new antibody is a combination of the fourth component 

of library-1 (L1C4), the third component of library-3 

(L3C3), and the first component of library-2 (L2C1).  

 

Figure 3.  Antibody libraries (top) and a new formed antibody (bottom). 

C. Clonal Selection Algorithm 

Clonal selection algorithm is a technique that adapts 

artificial immune systems. It uses two populations: 

antibody population and antigen population. Antibody 

population is the current best population. Antigen 

population is defined by the environment and formed by 

randomizing antibody solutions. After the population is 

formed, the population with the highest fitness will be 

cloned and mutated. 

 

Figure 4.  Clonal selection algorithm flowchart. 
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Fig. 4 shows the flowchart of the clonal selection 

algorithm applied in this paper [12], [13]. At first, this 

algorithm generates antibody libraries once. The number 

of libraries is equal to the length of an antibody divided 

by an integer number. This makes sure the component 

length of each library gets the equal portion in the new 

antibody. The next step is to generate antibodies and 

antigen. An antibody is generated by randomly picking 

any library’s components. If a library has chosen, it can’t 

be used again in the next step. The process is continued 

until a new solution is fully generated. Antibody libraries 

are formed based on the antigen. It is inspired by the 

human immune system that is built antibody libraries 

based on the foreign pathogen (antigen). Antigen itself is 

formed randomly.  

In this algorithm, the fitness value of the antigen will 

be compared with the fitness value of the antibody. The 

antigen helps to find the best solution because in each 

iteration the value of the antigen is replaced by the best 

antibody found so far. In the next step, only the best 

solutions from the previous steps will be cloned. 

At the comparison process, antigen with worse fitness 

than the antibody will be replaced by the whole genes 

from the antibody. This antigen will then be cloned. 

Some clones are formed based on the previous best 

antigens. These clones will then be mutated. The fitness 

for each mutated clone will be calculated, and the best-

mutated clones will be the new solution candidate. This 

process is continued until some final criteria are met. The 

best clone from the final iteration will be the final 

solution for the clonal selection algorithm. 

D. Fitness 

Fitness value is an evaluation function to measure the 

performance of the algorithm. It is calculated with the 

following formula: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
  (1) 

Makespan is the total processing time needed until all 

the jobs are finished to be processed in all machines. The 

formula is designed so that the longer the makespan, the 

smaller the fitness value for the candidate solution. On 

the other hand, the smaller makespan will make the 

fitness value bigger. 

E. Hypermutation 

Hypermutation type in the clonal selection that is used 

in this paper is inverse mutation. It is the most commonly 

used in clonal selection algorithms. It works by 

investigating the sequence of the solution from j to i 

index. As an example, if there is a sequence of 1-2-3-4-5 

and i=2 and j=5, then by applying the inverse mutation, 

the sequence becomes: 1-5-4-3-2. The makespan of the 

original sequence will then be compared to the makespan 

of the new sequence. If the makespan of the new 

sequence is less than the original sequence, then this 

sequence will replace the original sequence. The new 

sequence mimics the antibody clone after mutation, while 

the original sequence mimics the antibody clone before 

the mutation. 

F. Mutation Rate 

Mutation rate or probability is the rate that determines 

how many times a candidate solution should be mutated 

in a cloning process. In this paper, the mutation rate is 

calculated by the following formula: 

𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =  𝑙𝑒𝑛𝑔𝑡ℎ𝑂𝑓𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑦 ×  3 (2) 

where  

● mutation_rate: An integer value that shows how 

many times the mutation process will be 

executed. 

● Length of antibody: The length of an antibody 

G. Taillard Benchmark  

As a benchmark problem, we use Taillard [14] set 

problem to measure the performance of the clonal 

selection algorithm. The problem size corresponds to the 

real dimensions of industrial problems. The upper bound 

and lower bound makespans show the best and the worst 

cases of makespan for each test case. We conduct some 

experiments and compare the makespan results with the 

upper and lower bound in the Taillard’s dataset. 

Each dataset consists of the information about: 

1. Number of machines 

2. Number of jobs 

3. The job processing order for each machine 

4. Processing time for each job at each machine. 

 

Figure 5.  An example of Taillard’s benchmark problem. 

Fig. 5 shows an example of a job shop problem in 

Taillard’s dataset. In this case, there are 20 jobs to be 

processed in 20 machines, with the upper bound (the 

worst makespan) = 2100, and the lower bound (the best 

makespan) = 1711. The data is followed by Times, which 

show the processing times of each job in each machine. 

Each row shows each job. Because there are 20 jobs, in 

this case, there are 20 rows in Times. The first row shows 
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the processing times of jobs 1 in all 20 machines. So, 

there are 20 columns in each row. Each column shows the 

processing time of job 1 in each machine. The next block 

of data is called Machines. Each row in this block shows 

the machine order for each job. Because there are 20 jobs 

in this case, then there are 20 rows in this block. The first 

line shows the machine order to process job 1: start from 

machine 7 - 2 - 16 - 3 - 20 - … -5. This block relates to 

the previous block, Times. It can be seen that the first job 

goes to machine 7 for 64 times, then continues to 

machine 2 for 57 times, etc. until the last machine, 

machine 5 for 94 times. 

IV. EXPERIMENTS 

Fig. 6 shows an example of the program result to 

schedule 6 jobs in 4 machines. The makespan for this 

example is 13. 

 

Figure 6.  Program run to schedule 13 jobs in 4 machines. 

Some experiments with different program parameters 

are conducted to find factors that affect the program 

results. These parameters are number iterations, number 

of mutations, and number of clones. Each experiment has 

a different number of jobs and machines (see Table II). 

TABLE II.  PROCESSING TIME TABLE OF FIGURE 1 

Experiment no. Number of machines Number of jobs 

1 15 15 

2 20 20 

3 15 20 

 

The results can be seen from Table IV - Table IX, and 

Fig. 7 – Fig. 17 show the chart representations of some of 

these experiments. The makespan results have been 

compared with the lower bound and the upper bound of 

Taillard’s benchmark problems. 

A. Experiment with Number of Iterations  

In this experiment, different numbers of iterations were 

tested to see its effect on the results (see Table III). 

TABLE III.  SETTING OF EXPERIMENT 1 

 

Table 

Number of 

Iterations Clones Mutations Machines Jobs 

IV 1,000 

10 

10 

15 15 

V 10,000 10 

VI 1,000 10 10 20 20 

VII 10,000 

VIII 1,000 

10 10 15 20 

IX 10,000 

TABLE IV.  EXPERIMENT WITH 1,000 ITERATIONS, 15 MACHINES, 15 

JOBS 

Case Lower Bound Upper Bound Makespan 

1 1005 1231 1507 

2 953 1244 1589 

3 1036 1222 1579 

4 973 1181 1666 

5 940 1233 1671 

TABLE V.  EXPERIMENT WITH 10,000 ITERATIONS, 15 MACHINES, 15 

JOBS 

Case Lower Bound Upper Bound Makespan 

1 1005 1231 1494 

2 953 1244 1531 

3 1036 1222 1540 

4 973 1181 1673 

5 940 1233 1655 

 

 

Figure 7.  Experiment Chart with 15 Machines & 15 Jobs. 

TABLE VI.  EXPERIMENT WITH 1000 ITERATIONS, 20 MACHINES, 20 

JOBS 

Case Lower Bound Upper Bound Makespan 

1 1217 1663 2120 

2 1314 1626 2141 

3 1248 1574 2018 

4 1284 1660 2075 

5 1256 1598 2031 
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TABLE VII.  EXPERIMENT WITH 10000 ITERATIONS, 20 MACHINES, 20 

JOBS 

Case Lower Bound Upper Bound Makespan 

1 1217 1663 2084 

2 1314 1626 2105 

3 1248 1574 1983 

4 1284 1660 2066 

5 1256 1598 2017 

 

Figure 8.  Experiment Chart with 20 Machines & 20 Jobs. 

TABLE VIII.  EXPERIMENT WITH 1000 ITERATIONS, 15 

MACHINES, 20 JOBS 

Case Lower Bound Upper Bound Makespan 

1 1254 1376 1835 

2 1244 1267 1801 

3 1243 1367 1785 

4 1329 1345 1694 

5 1163 1366 1784 

TABLE IX.  EXPERIMENT WITH 10000 ITERATIONS, 15 MACHINES, 20 

JOBS 

Case Lower Bound Upper Bound Makespan 

1 1254 1376 1780 

2 1244 1267 1787 

3 1243 1367 1739 

4 1329 1345 1673 

5 1163 1366 1759 

 

 

Figure 9.  Experiment Chart with 20 Machines & 20 Jobs. 

 

Figure 10.  Comparison of 1,000 and 10,000 iterations 

From these experiments, the larger size of iterations, 

the lower the makespan (see Fig. 10). 

B. Experiment with Number of Mutations  

In this experiment, different numbers of mutations 

were tested to see its effect on the results (see Table X). 

The results of these experiments can be seen in Fig. 11 – 

Fig. 13. 

TABLE X.  SETTING OF EXPERIMENT 2 

 

Fig. 

Number of 

Mutations Clones Iteratio

ns 

Machines Jobs 

11 

10 

10 10,000 15 15 

100 

12 

10 

10 10,000 20 20 

100 

13 

10 

10 10,000 15 20 

100 
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Figure 11.  Mutation experiment chart with 15 machines & 15 Jobs 

 

Figure 12.  Mutation experiment chart with 20 machines & 20 Jobs. 

 

Figure 13.  Mutation experiment chart with 15 machines & 20 Jobs 

From these experiments, the larger size of mutations, 

the lower the makespan (see Fig. 14). 

 

 

Figure 14.  Comparison of 10 and 100 mutations 

C. Experiment with Number of Clones  

In this experiment, different numbers of mutations 

were tested to see its effect on the results (see Table XI). 

The results of these experiments can be seen in Fig. 15 – 

Fig. 17. 

TABLE XI.  SETTING OF EXPERIMENT 3 

 

Fig. 

Number of 

Clones Mutations Iterations Machines Jobs 

15 

10 

10 10,000 15 15 

100 

16 

10 

10 10,000 20 20 

100 

17 

10 

10 10,000 15 20 

100 

 

 

Figure 15.  Clone experiment chart with 15 machines & 15 jobs. 

 

Figure 16.  Clone experiment chart with 20 machines & 20 jobs 

From the experiment results, it can be observed that 

the larger the number of clones, the lower the makespan 

will be (see Fig. 18). 

The number of clones makes a larger makespan 

difference than the number of iterations and mutations. 

The larger number of clones and iterations increase 

significantly the processing time of the program. The 

change of mutation parameter doesn’t make a significant 
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difference in the processing time but also results in a 

slightly different makespan. 

 

 

Figure 17.  Clone experiment chart with 15 machines & 20 jobs 

 

Figure 18.  Comparison performance of 10 and 100 clones 

V. SUMMARY 

From the experiment results, it can be observed that 

changing the program parameter, such as the number of 

iterations, mutation rate, and the number of clones can 

change the length of makespan. The results of the 

program are bigger than the upper bound of the Taillard 

benchmark dataset, which means that it is not as good as 

the benchmark data. This paper uses maximum 10,000 

iterations, 100 mutation rate, and 100 clones, while 

Taillard uses minimum 106 iterations and the number of 

clone minimum103. The bigger the number of iterations, 

mutation rate, and the number of clones, the better the 

result for the clone selection algorithm. The clonal 

selection algorithm needs huge parameter setting values 

to perform better. 
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