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Abstract—In this paper, a new approximate gradient 

method is proposed for constrained reservoir production 

optimization. The new algorithm method is gradient-free, 

which is a compromised solution to finite-difference method. 

To get a quick evaluation of the gradient, all parameters are 

perturbed at one time stochastically and the calculated 

gradient is also stochastic. Based on the relationship 

between gradient and direction derivative, we construct a 

new search direction with the stochastically generated 

perturbation vector. It is proved that the stochastic gradient 

is always an uphill direction, ensuring that a better solution 

can be found along the stochastic gradient direction. Besides, 

projected gradient method is incorporated into the new 

algorithm to deal with constraints in production 

optimization. A comparison is made between the new 

algorithm and simultaneous perturbation stochastic 

approximation (SPSA) algorithm using a synthetic reservoir 

case. The results show that the new method outperforms 

SPSA in constrained production optimization problem. 

After optimizing the production strategy for a synthetic 

reservoir, the economic benefit improves about 20%. 

 

Index Terms—constrained reservoir production 

optimization, SPSA algorithm, approximate gradient, 

directional derivative, projected gradient method 

 

I. INTRODUCTION 

Optimization theory [1], [2] has been introduced into 

reservoir decision making for tens of years. Reservoir 

production optimization process can be expressed as an 

optimization problem. By controlling production and 

injection operation parameters periodically, the reservoir 

economic benefits reach the optimal condition. Generally, 

both gradient-based methods and gradient-free methods 

have been adopted in reservoir optimization. For an 

optimization problem, gradient methods [3], [4] seem to 

be the most efficient. However, it is hard to gain and store 

the huge data information in calculating the gradient 

matrix using gradient-based methods in large-scale 

problems. More and more gradient-free methods take part 

in production optimization. 

Generic algorithm (GA) [5] was an effective random 

search optimization method, which has been introduced 

into petroleum engineering field for a long time. In 2003, 
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Yeten B., Durlofsky L.J. and Aziz K. [6] used GA in the 

optimization of well location, well trajectory as well as 

well pattern. M. tavakkolian, F. Jalali F. and M.A. Emadi 

[7] applied GA in optimizing the performance of a 

production well and concluded that GA was an influential 

tool for solving petroleum engineering problems. Similar 

to GA, particle swarm optimization (PSO) method [8] 

was a population based stochastic optimization technique 

which was proposed by Dr. Eberhart and Dr. Kennedy in 

1995. Onwunalu and Durlofsky employed PSO method to 

the optimization of well patterns [9]. Hui Zhao, Gaoming 

Li and A.C.Reynolds introduced PSO into production 

optimization [10] and compared the effectiveness of PSO 

with other gradient-free methods. 

Although gradient-based methods were thought to be 

the most effective, the huge difficulties of calculating 

gradient limited the application in large-scale reservoir 

production optimization. To overcome this default, 

approximate gradient methods were proposed.  

With just one simultaneous stochastic perturbation, an 

approximate gradient was calculated. Ref. [11] proved 

that the SPSA gradient direction was an uphill direction 

and the expectation of SPSA gradient was the real 

gradient direction. Gao G., G. Li, and A. C. Reynolds 

firstly applied SPSA method in automatic history 

matching [12]. In 2007, Wang, C., G. Li, and A. C. 

Reynolds used SPSA in production optimization [13] 

under the context of close-loop reservoir management. 

Ensemble-based optimization (EnOpt) method [14] is 

another gradient evaluation method, developed by Chen, 

Y., D. Oliver, and D. Zhang. In reservoir production 

optimization process, the gradient was obtained by 

calculating the covariance between the control vector and 

NPV.  

In this paper, a new approximate gradient method is 

proposed for production optimization. The new algorithm 

method is gradient-free. The new algorithm is a 

compromised solution to finite-difference method. To get 

a quick evaluation of the gradient, all parameters are 

perturbed at one time stochastically. As a result, the 

calculated gradient is also stochastically. Based on the 

relationship between gradient and direction derivative, we 

construct a new search direction with the stochastically 

generated perturbation vector. The stochastic gradient is 

proved to be an uphill direction, ensuring that a better 
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solution can be found along the stochastic gradient 

direction. Besides, projected gradient method is 

incorporated into the new algorithm to deal with 

constraints in production optimization. A comparison is 

made between the new algorithm and simultaneous 

perturbation stochastic approximation (SPSA) algorithm 

using a synthetic reservoir case. The results show that the 

new method outperforms SPSA in constrained production 

optimization problem. 

II. MATHEMATICAL MODELING 

Reservoir production optimizing process can be 

expressed as an optimization problem with three 

gradients: control variables, objective functions, and 

constraints. By controlling wells’ operation parameters 

periodically, certain production indexes of the reservoir 

reach the optimal condition. For practical oilfield 

production, investors focus more on economic profits, 

well known as net present value (NPV). The objective 

function of reservoir production optimization is described, 
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where 
( )J 

 is the total economic profits, $; u is the 

control variables to be optimized such as production rates, 

injection rates, well bottom hole pressure(BHP); T is the 

total number of simulation time steps; P
N

and I
N

 are the 

total number of producers and water injectors 

respectively; o
r

is the price of crude oil, $/STB; w
c

and 

wi
c

are the water processing cost and injecting cost 

respectively, $/STB; ,

n

o j
q

and ,

n

wp j
q

are the average oil and 

water production rate of the j-th producer at the n-th 

simulation time step, STB/day; ,

n

wi iq
 is the average water 

injection rate of the i-th injector at the n-th simulation 

time step, STB/day; b is the annual discount rate, %; 
nt is the time interval of the n-th simulation time step, 

day; 
nt is the cumulative time up to the n-th simulation 

time step, year. 

In oil production process, operation parameters of 

producers and injectors are limited to the reservoir 

geological properties, fluid properties, as well as ground 

production facilities. That is to say, the maximum 

problem defined in (1) is subject to variable constraints. 

Equations (2)-(4) are corresponding to the equality 

constraints, non-equality constraints and boundary 

constraints. 
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low up u u u   (4) 

where x  represents the reservoir property vector 

(porosity, permeability, saturation and so on). 

III. OPTIMIZATION METHOD AND SOLUTION PROCESS 

A. New Approximate Gradient Estimation 

In mathematics, gradient is a generalization of the 

usual concept of derivative to the functions of several 

variables. Directional gradient is the change rate of the 

functions along a certain directions. Therefore, 

directional gradient is relevant to gradient shown in (7). 
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where i
e

 is the unit vector in i-th direction; u  is a tiny 

disturbance at point u ; l  represents a specific direction; 

i


 is the intersection angle of i
e

 and l . 

According to simultaneous perturbation stochastic 

approximation (SPSA) algorithm, a vector Δ  of 

independently distributed random variables with an 

average value of zero is generated. The SPSA 

approximate gradient is, 
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where i  is the i-th variable value in the vector Δ . 

The directional gradient at Δ  direction is, 

2

( ) ( )u Δ U

Δ Δ

  




J J J

                   

(9) 

 

Combining (8) and (9), the i-th component of SPSA 

approximate can be expressed as, 
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Substituting (10) into (9), the equation becomes, 
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The sum of N components is, 
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The product of (7) and (12) is, 
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We define a new direction ĝ  as an approximate 

gradient, 

 ˆ cos cosg θ θ g  
T

                  
(14)

 

From (13), we know that, ĝ  is always an uptrend. 

B. Constraints Handling 

1) Boundary constraints 

One way to deal with the upper-lower boundary 

constraints is to employ log-transformation. In log space, 

the new derived variables are no longer subject to 

boundary limits. After getting the optimal value in log 

space, inverse log transformation is used to get the exact 

value in original space. The log transformation formula is, 
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where is
 is the i-th component of the variable vector in 

log space. 

The inverse log transformation formula is, 
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2) Equality constraints and non-equality constraints 

 

Figure 1.  The illustration of modified search direction by projected 
gradient method. 

 

Projected gradient method is an effective method for 

dealing with equality constraints and non-equality 

constraints, which is proposed by Rosen in 1960. The 

main principle of projected gradient method is illustrated 

in Fig. 1. If the iteration point belongs to the feasible 

region limited by (2)-(3), search along the gradient 

direction or approximate gradient direction. However, for 

iteration point set on the boundary line, we must make an 

adjustment for the search direction to pull the iteration 

point back to the feasible region. 

The new search direction becomes, 
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And the new iteration point can be described as, 

1 ˆ  k k
u u g

                          (18) 

where N  is the coefficient matrix in (2)~(4); ΔE is the 

residual vector of equality constraints; and CΔ  is the 

residual vector of non-equality constraints;  is the 

search length. 

C. Solution Process 

The outline of the new approximate gradient method 

for dealing with constraint reservoir optimization is 

summarized as follows. 

 Step 1: Give an initial value 0u
 for optimization. 

 Step 2: Call Eclipse simulator and compute the 

objective function value with (1). 

 Step 3: With (15), transform the variable vector in 

log space. 

 Step 4: Calculate the approximate gradient with 

(14). 

 Step 5: Modify the approximate gradient with (17). 

 Step 6: Update the variable vector with (18). 

 Step 7: Call Eclipse simulator and compute the 

new objective function value with (1) 

 Step 8: Inverse log transform the variable vector 

with (16) and compare the new value with the last 

value. If the new function value is smaller than the 

last one, shorten   and repeat step 6 ~ step 7; 

Otherwise, update the variable vector with the new 

one calculated in step 6. And repeat step 2 ~ step 7 

until the set search number is reached. 

IV. OPTIMIZATION RUNS AND RESULTS 

We now apply the new proposed method to a synthetic 

water flooding reservoir, with 25×25×1 grid blocks. 

The reservoir area is 106 m and thickness is 8m. Water 

and oil are slightly compressible fluid. The condensate 

water saturation is 0.3, and the residual oil saturation is 

0.1. The initial pressure is 26.2MPa. From Fig. 2, we can 

see that the reservoir is seriously heterogeneous, with 

three high permeability channels. 



  

  

 

 

 

 

 
 

 

 
 

 

 

Journal of Industrial and Intelligent Information Vol. 2, No. 3, September 2014

1972014 Engineering and Technology Publishing

 

Figure 2.  Log permeability distribution of the synthetic reservoir. 

The reservoir contains 9 injectors and 4 producers, 

forming a typical five-spot well pattern. The anticipated 

reservoir production life is 1800 days. Suppose that the 

well control parameters are altered, and we have ten 

control steps. Therefore, the total number of control 

variable is (4+9)×10=130. A base production strategy is 

given beforehand: the oil production rate is 1400 

STB/day for a single producer; the water injection rate is 

345 STB/day for a corner injector, 690 for an edge well. 

Therefore, the total oil production rate is 5600 STB/day 

and the total injection rate is 5600 STB/day, which 

guarantees 1:1 injection-production ratio. 

In the process of reservoir optimization, the total 

injection rate and production rate are both constant. By 

allotting different amount to each well, the economic 

benefits of reservoir production can be maximized. We 

set each producer rate with 0 3200
o

q  STB/day, and 

each injector rate with 0 3200
w

q  STB/day. The oil 

price is 104.3 $/BBL, water injection cost 13.0 $/BBL 

and the sewage treatment cost 13.0 $/BBL, and the 

annual discounting rate is 0. 

In reservoir production optimization process, SPSA 

algorithm is an effective method. In this article, we 

compare our results with that of SPSA method. Main 

parameters used in SPSA are set as following: 

6, 2, 0.1, 0.9, 0.9A c a      . The meaning of 

these constant can be found in [11]. And the initial search 

step used in new method in log space is 6. 

 
Figure 3.  Optimization result of NPV with respect to simulation 

numbers. 

According to Fig. 3, the economic profit of the initially 

proposed production strategy is about 1.35×108 $. We 

optimize the production and injection parameters with our 

new method and SPSA method separately. After 

hundreds of simulation, the NPV values of the reservoir 

production have increased. From the final NPV’s 

comparison, we know that the new method is more 

efficient than the SPSA method. The new method 

achieves 1.62 ×108 $ after 600 simulations, while SPSA 

achieves 1.55 ×108 $ after 600 simulations. 

Fig. 4 and Fig. 5 give comparisons of the cumulative 

oil production and cumulative water production. 

Although the liquid production rate keeps constant during 

the process of optimization, the cumulative oil production 

increased, with decreasing water production. According 

to Fig. 4, the oil production increases from 2.5 ×106 BBL 

to 2.9 ×106 BBL, and the increase rate reaches 16% with 

new method, which is even better than SPSA method. 

 
Figure 4.  Relationship between cumulative oil production and time. 

 

Figure 5.  Relationship between cumulative water production and time. 

Fig. 6 show the final saturation distribution at the end 

of production under three strategies: base strategy A, 

strategy B optimized with SPSA method, and strategy C 

optimized with new method. Because Inj-02、Inj-05 and 

Inj-08 locate near the boundary of low-permeability zone 

and high-permeability zone, injecting water flows easily 

along high-permeability zone and get to Prd-01 and Prd-

03 first, which forms a high-velocity water path. The 

viscosity of oil is bigger than that of water, therefore, 

injected water advances suddenly along water 

communication path and leaves low permeability zone 

undeveloped. Large part of oil remains in the reservoir as 

shown in Fig. 6(a) and the recovery ratio is low. However, 

by optimizing the control variables for each producer and 

each water injector, the displacement front becomes 

much more even, sweep efficiency becomes bigger and 
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less oil is left in the reservoir, which can be seen in Fig. 6(b) and Fig. 6(c). 

         

(a) production strategy A                                (b) production strategy B                                       (c) production strategy C 

Figure 6.  Final oil saturation distribution of three production strategies. 

Fig. 7 displays the production control variables for 

each well at each time step. We can provide some 

suggestions: (1) Under the capacity of facilities, 

increasing total water injection may make more economic 

profits; (2) For corner wells (Inj-1, Inj-3, Inj-7 and Inj-9), 

long-time water injection leads to high local pressure, 

which make water displacement front uneven. It is 

advisable to decrease the injection rate or adopt cyclic 

water flooding; (3) As Prd-01and Prd-03 is in the high 

permeability zone, high bottom hole pressure at the initial 

stage can improve the efficiency of water injection; (4) 

For Prd-02 and Prd-04, they are in the low permeability 

zone, improving producing pressure drop or changing 

producing pressure drop periodically may overcome its 

own defaults.  

 
(a) Optimized production rate 

 
(b) Optimized injection rate 

Figure 7.  Optimized production and injection parameters with the new 
proposed method 

V. CONCLUSIONS 

Based on the definition of gradient and directional 

derivative, a new method of calculating approximate 

gradient with a stochastic perturbation is proposed in this 

study. The stochastic gradient is proved to be an uphill 

direction, with which the maximum value can be obtained. 

Meanwhile, the gradient projected method is employed to 

deal with the effect of constraints in practical reservoir 

production optimization. Combined with the new 

proposed method and the projected gradient method, 

constrained production optimization is successfully 

solved.

 

A synthetic heterogeneous reservoir with high 

permeability streak is employed to test the

 

efficiency of 

the new method. Comparing

 

the results obtained by new 

method and SPSA method, the new method outperforms 

SPSA method. After optimization with our new method, 

the NPV value is improved from 1.35 ×108

 

$

 

to 1.62 ×108

 

$, and the cumulative oil production increases from 2.5

 

×106

 

BBL to 2.9

 

×106

 

BBL.
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