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Abstract—Software reliability growth models with 

confidence intervals (SRGMs) are often utilized in software 

industry in that they provide useful information for 

software developers to decide the optimal software release 

time and to refine the quality of software testing tasks. Most 

SRGMs, nonetheless, do not have transparent explanations 

for the variance estimation of cumulative software errors. 

They might not be effective in deducing the confidence 

interval regarding the mean value function. In such cases, 

software developers cannot estimate the possible risk 

variation of software system by using the randomness of 

mean value function, and it might debase the practicability 

of applications. In this paper, we utilize Ohba’s Inflection S-

shaped model to build the SRGM with confidence intervals 

that can assist the software developers in determining the 

optimal release time. 

 

Index Terms—Software Reliability Growth Model; software 

reliability; confidence intervals; stochastic differential 

equations; Non-homogeneous Poisson process 

 

I. INTRODUCTION 

Software reliability engineering is critical in software 

industry, since it can offer products with high 

performance and provide useful information for software 

developers and testing staff during the testing/debugging 

phase. How to improve the reliability and reduce the cost 

of software systems is the main issue of the software 

industry [1]. Software developers need to decide the 

optimal software release time, refine the quality of 

software testing tasks, and control related software 

testing/debugging cost by means of software reliability 

growth models (SRGMs) to ensure the software 

functionality. Generally, these software reliability growth 

models in previous literature are discussed in several 

kinds of probability distributions such as Exponential-

shaped, S-shaped, and a mix of the two [2]. The software 

failure phenomena are mostly examined based on the 

Non-homogeneous Poisson Process (NHPP). The 

exponential SRGM that Goel and Okumoto [1] proposed 
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is effective to portray the fault-detection process of 

software. In addition, quite a few of generalizations or 

modifications of SRGMs have been proposed in that the 

curve of cumulative number of faults detected is often 

associated with Exponential-shaped or S-shaped mean 

value functions. For instance, the delayed S-shaped 

reliability growth models proposed by Yamada et al. [3] 

and Yamada [4]. An inflection S-shaped reliability 

growth model was proposed by Ohba [5] and [6].  Pham 

and Zhang [7] proposed a software reliability model that 

combines testing coverage measures to assess the 

software reliability. Huang [8] joins a generalized logistic 

testing-effort function and the change-point parameter for 

analyzing system performance in their proposed model. 

These models may be applicable to specific types of 

software failure data but not considering the learning 

effect during the software-debugging process. If the 

software companies cannot afford more budget for testing 

and debugging, the raise of software reliability is rely on 

the learning effect of software developers. The learning 

effect here signifies that the debugging efficiency of 

software developers increases in the process due to the 

experience of detecting previous software errors without 

purchasing new equipments or introducing new 

techniques. Besides, the cost trade-off of fault detection 

and software release time affects the competitiveness of 

the software companies. How to correctly estimate the 

interval of mean value functions is the main focus of this 

study. Since the number of software errors is finite, there 

should be less software errors to be detected with time. 

The variance of cumulative software errors should be 

decreasing instead of increasing with time. Tamura and 

Yamada [9] proposed the concept that the variance of the 

mean value function stem from the error detection 

process and used stochastic differential equations method 

(SDE) to deduce the mean value function. These 

mentioned models still have some problems even though 

SDE is effective in evaluating the mean value function. 

For example, Yamada et al. [10] proposed a simple 

SRGM by applying an Itô type of SDE where the error 

detection rate is constant, but the error detection rate 
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would vary over time in practice. Lee et al. [11] 

developed an SRGM by using an Itô type SDE based on 

the delayed S-shaped and the inflection S-shaped models 

respectively proposed by Yamada et al. [3] and Ohba [6], 

without considering the variance in the mean value 

function. This may be an important factor to measure 

testing costs during the testing phase. Tamura and 

Yamada [9] derived a flexible SDE model to describe the 

fault-detection process by using an inflection S-shaped 

SRGM and an Itô type SDE [12], but such a model 

improperly presents the expectation and variance of the 

mean value function, and lacks a complete process for 

obtaining the parameters of the model.  

Hence, discovering the confidence intervals of 

software reliability can enhance the decision of software 

releases and control the related expenditures for software 

testing. Yamada and Osaki [13] considered that the 

maximum likelihood estimates (MLE) concerning the 

confidence interval of the mean value function can be 

estimated by traditional NHPP method. Yin and Trivedi 

[14] obtained the confidence bounds for the model 

parameters via the Bayesian approach by quoting the 

estimation method of Yamada and Osaki [13]. Huang [8] 

also adopted the method of Yamada and Osaki [13] to 

draw a graph to illustrate the confidence interval of the 

mean value function. 

The possible reason of existing improper variances lies 

in the misconception that merely the randomness of the 

mean value function should account for the final 

estimation error of software reliability. This turns out that 

the variance of mean value function will increase in time. 

However, since the number of software errors is finite, 

there should be less software errors to be detected with 

time. Therefore, the variance of cumulative software 

errors should be decreasing instead of increasing as time 

goes by. In this regard, it is assumed that the variance in 

the mean value function mainly stems from the error 

detection process in this study, and the confidence 

interval of the mean value function would thus diminish 

as remaining software errors decrease. 

According to the above discussion, several SRGMs 

with confidence intervals by using the method of SDE 

will be proposed in this study. The proposed SRGMs 

with confidence intervals could assess the variance in the 

mean value function more reasonably, and assist software 

developers in properly dealing with the risks of software 

reliability estimation. 

II. MODEL DEVELOPMENT 

Various software reliability growth models have been 

proposed in the last two decades, and some of these 

models were fairly effective in prediction of the average 

number of cumulative software errors during the testing 

task. These models based on non-homogeneous Poisson 

process include Goel and Okumoto’s model (1979) [15], 

Yamada’s delayed S-shaped model (1983) [3], Ohba’s 

inflection S-shaped model (1984) [6], Musa exponential 

model (1985) [16], Chiu and Haung’s learning effect 

model (2008) [17]. Table I shows the corresponding 

mean value functions and the error detection rate 

functions for the five classic models. 

TABLE I.  SUMMARY OF MEAN VALUE AND ERROR DETECTION RATE 

FUNCTIONS FOR THE CLASSIC MODELS 

Model 
Mean value function and error 

detection rate function 

Goel and Okumoto’s model 

(1979)[15] 

( ) (1 )btm t a e 
 

( )d t b
 

Yamada’s Delayed S-

shaped model (1983)[3] 

( ) (1 (1 ) )btm t a bt e  
 

2

( )
(1 )

b t
d t

bt



 

Ohba’s Inflection S-shaped 

model (1984)[6] 

1
( )

1

bt

bt

e
m t a

ce





 
  

   

( )
(1 )bt

b
d t

ce



 

Musa Exponential Model 
(1985)[16] 

( ) 1

ct

nLm t a e

 
 
 

 
  

 
 

 

( ) td t re  
 

Chiu and Haung’s learning 

effect model (2008)[17] 

( )

1

( ) 1
t

m t a

e  










 
 

  
  
   

( )
( ) ( ) 1

t
d t

e  


 

 

 
   

   

 

The following notations will be used to deduce the 

model of this study: 

Notations: 
a : the expected number of all potential errors in the 

software system before the software testing begins 

( )m t : the mean value function of the software error 

detection process, which is the expected number of errors 

detected within time (0, )t  

( )M t : the function of the residual software errors at 

time t 

( )d t : the error detection rate per error at time t 

( )W t : the variable for Wiener process  

 : the standard deviation stems from testing process, 

and it is a positive constant to denote the magnitude of 

the irregular fluctuation. 

Due to the fact that the above-mentioned models in 

Table I lack of the discussion about the corresponding 

confidence intervals, the decision makers cannot evaluate 

the possible variation in the mean value function itself 

during the testing task. Accordingly, we use the models in 

Table I as basis to develop their corresponding 

confidence intervals of the mean value function. 

According to the behavior of testing and debugging, 

we assume the irregular fluctuation is influenced by the 

error detection rate, and it can be represented by the 

following stochastic differential equation: 
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Let ( ) ( )M t a m t  , ( )
1 bt

b
d t

ce



 

 
d ( )

( )+ ( ) ( )
d

M t
d t dW t M t

t
   

 

d ( )

d ( )+ ( )
( )

M t

t d t dW t
M t

 
 

Let  ( ) ln ( )Z t M t  

According Itô’s calculus: 

21
d ( ) ( ) ( ) d d ( )

2
Z t d t t W t 

 
     
 

 

2

0 0 0 0

1
d ( ) ( )d d d ( )

2

T T T T

Z t d t t t W t         

∵ 
0 0

(1 )
( )d d ln

1 1

bT
T T

bt bT

b c e
d t t t

ce ce



 

  
    

  
   

∴
2

0 0 0

(1 ) 1
d ( ) ln d d ( )

1 2

bT
T T T

bT

c e
Z t t W t

ce
 





 
   

 
    

 

2

0 0

ln ( )

(1 ) 1
ln d d ( ) Constant

1 2

bT
T T

bT

M T

c e
t W t

ce
 







 
   

 
 
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2
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1

bT
T w T

bT

c e
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 
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





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( ) Constant

2

1
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(1 )
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1

(1 )
                

1

bT
T W T
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bT
T
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bT

c e
E M T E e

ce

c e
e E e

ce

 





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








 
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 


   

 

∵

2
21

( ) 2 2
1

d
2

x
T

W T x TE e e e x e
T


 



 
 


       

 
2 21 1

Constant
2 2

Constant

(1 )
( )

1

(1 )
                

1

bT
T T

bT

bT

bT

c e
E M T e e

ce

c e
e

ce

 











 








 

∵Initial condition: (0)M a   

∴  Constant=ln a  

∴  
(1 )

( )
1

bT

bT

c e
E M T a

ce





 
  

 
 

∴    
1

( ) ( )
1

bT

bT

e
E m T E a M T a

ce





 
    

 
 

 

     
22( ) ( ) ( ) ( )Var m T Var M T E M T E M T      

2

2

2 2 2 ( )(1 )
( )

1

bT
T W T

bT

c e
E M T E a e

ce

 


 



  
          

 (It is 

deduced by Itô’s calculus under the initial condition: 
2 2(0)M a ) 

∵

2

22 ( ) 2 22
1

d
2

x

W t x TtE e e e x e
t

  




 


       

2

2

2 2 (1 )
( )

1

bT
T

bT

c e
E M T a e

ce






 
       

                       (1) 

   

 

 
2

22

2

2

( ) ( )

( ) ( )

(1 )
1

1

bT
T

bT

Var m T Var M T

E M T E M T

c e
a e

ce








   

 
  

 

                                    (2) 

 

According to the above Equations, we have got the 

general forms of the expectation  ( )E m T  and the 

variance  ( )Var m T  of the mean value function.  

III. ESTIMATION OF PARAMETERS 

Since the above model involve unknown parameters 

which can be estimated from the observed data, the 

method of maximum likelihood is utilized to estimate the 

values of unknown parameters. The set of paired data 

( , )
i i

T m can be collected in practice, where i
m  is the total 

number of errors detected until i
T . Also, suppose that the 

unknown parameters of the specified SRGM are 

determined by the 1n  observed paired data: 

0 0 1 1 2 2
( , ),( , ),( , ),...,( , ),

n n
T m T m T m T m  then the likelihood 

function for the SRGMs can be expressed as 

 

   1
1

1 1 2 2 3 3

( ) ( ( ) ( ))

1

1 1

Pr{ ( ) , ( ) , ( ) ,..., ( ) }

( ) ( )

( )!

i i
i i

n n

m m m T m Tn
i i

i i i

L N T m N T m N T m N T m

m T m T e

m m




  



 

    







, 

(3) 

 

Taking a logarithm of the likelihood function, the MLE 

of the unknown parameters can be obtained by 

numerically solving the simultaneous equation  

ln( )

(unknown parameter 1)

L


 = 

ln( )

(unknown parameter 2)

L


 

= … = 
ln( )

(unknown parameter k)

L


=0. 

IV. ESTIMATION OF CONFIDENCE INTERVALS 

In this section, the relevant confidence intervals of the 

SRGMs are developed; the confidence interval of the 

mean value function can be developed using Equations (1) 

and (2), which is given by 

 
 

 

2

/2,
2

1

1
( ) [ ( )] 1

CR n k n

i

i

T t
E m T t m T

n
t t







  


, (4) 

where CR  denotes the critical region, /2,CR n k
t

  denotes the 

value providing an area 2CR  of the Student-t 

distribution with n k  degrees of freedom.  
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However, in the classical model, owing to the different 

expression of 2̂ , the confidence intervals that are 

correspondent with Equation (4) would be somewhat 

dissimilar. For instance, in the classical model, the 

confidence interval of the mean value function is 

expressed as 

 

 
   

 

2
2

1

/2,
2

1

( )
1

( ) 1

n

i i

i

CR n k n

i

i

m m t
T t

E m T t
n k n

t t







  
  

    
    

  




. (5) 

 

Since the classical model assumes that the variance in 

mean value functions stems from ( )m T , whereas the 

proposed model assumes that the variance in mean value 

functions stems from ( )d T , confidence intervals in the 

classical model would be divergent in the late testing 

phase, but convergent for the proposed model. This can 

be explained by the fact that the possibility of finding 

new software errors becomes lower due to less software 

errors remaining in the late testing phase. In such a case, 

the variance in mean value functions turns out to be fewer 

in the proposed model, which is opposite to the case in 

the classical model. 

V. DECISION FOR OPTIMAL SOFTWARE RELEASE 

In practice, software developers would like to know 

when the software testing should be stopped so that the 

related costs can be minimized and the requirement of 

software quality can be met. In general, the longer the 

testing time the more reliable the software. However, a 

longer testing time will increase costs and lead to the loss 

of commercial opportunities. Therefore, optimal release 

policies are of practical importance for software 

developers. 

In order to minimize the total testing cost and meet the 

minimal requirement of software reliability, the optimal 

software release model can be formulated as: 

 

   

    2

0 1 2

3 4 1

0

 ( ) ( )

                      1 ( / )

 :  ( / )

y

v

Min E C T C C T C E m T u

C R x T C v T

Subject to R x T R

  

   



, (6) 

 

where 
0C  is the set-up cost for software testing, 

1C  is the 

software routine cost per unit time, 
2C  is the cost of 

removing an error per unit time during testing, 
3C  is the 

loss due to software failure,   2

4 1

v
C v T  is the loss of 

commercial opportunities due to postpone software 

release. 
0R  is the minimum requirement of software 

reliability for avoiding a premature software release.  

Note that the optimal software release time can be 

determined using Equation (6), but it only fits for an 

average case. However, in the worst case scenario, 

software reliability might not reach the expected level if 

the software debugging is not effective. Therefore, 

software developers should give a conservative 

estimation of software reliability. Consequently, the mean 

value function  ( )E m T  and the software reliability 

function ( / )R x T  in Equations  (6) should be changed to 

expressions in terms of lower boundaries ( )CR

LBm T  and 

( / )CR

LBR x T  given a specified critical region CR , and 

therefore the expected total software testing cost in the 

worst case can be rewritten as: 

 

 

    2

0 1 2

3 4 1

0

 ( ) ( )

                      1 ( / )

 :  ( / )

CR CR

LB LB y

vCR

LB

CR

LB

Min E C T C C T C m T u

C R x T C v T

Subject to R x T R

  

   



, 
(7) 

 

Decision makers can set an appropriate confidence 

level to determine the optimal release time with 

consideration of both software quality and costs during 

the testing phase. 

VI. APPLICATION 

In this section, a numerical example is provided to 

illustrate the determination of the optimal release policies. 

Suppose that a software technology company acquires a 

contract of developing a new work flow system. After the 

end of the coding phase, the manager of the application 

service provider has to identify an appropriate time to 

release the software.  

According to the evaluation from historical data and 

domain experts, it is determined that Ohba’s inflection S-

shaped model would fit this case. The related parameters 

of the model are as follows: the potential errors a are 

about 4500 and the standard deviation of the detection 

rate σ is 0.3112. The parameters b and c are 1.5 and 0.005, 

respectively.  

Besides, the staff in the testing department work a total 

of 10 hours a day, 30 days a month. Other related cost 

parameters are as follows: 
0C =$2,000, 

1C =$6,000, 

2C =$12,000, 
3C =$250000, 

4C =$4,000, x =1 hours, 
1v =2, 

2v =1.6, and 
yu =1 hour. In addition, the manager would 

like to assure that the developed business application can 

satisfy the minimal requirement of software reliability 

(R0=0.9) with the 95% confidence level, and therefore 

they need to identify the optimal software release times 

for the average and worst cases. 

By Equations (6) and (7) and spectrum analysis can be 

used to obtain the optimal release time, the expected 

testing cost, and expected reliability. As shown in Fig. 1, 

in the average case, the optimal release time T* is 1.8 

months after the testing/debugging work has started. The 

expected testing cost is about $332505 and the expected 

reliability can reach 0.9381, which meets the minimal 

requirement of software reliability (R0=0.9). However, in 

order to satisfy the software reliability at the confidence 

level of 95%, it would be necessary to extend the 

testing/debugging period and postpone the software 

release. In order to ensure that the software quality meets 

the requirement in the worst case situation, the decision-
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maker should extend the time of testing and debugging 

time from 1.8 months to 2.15 months, and the expected 

testing cost is $342,595. The expected reliability reaches 

0.92651. 

 

 

Figure 1.  Expected testing costs versus testing time in the average case 
and the worst case 

VII. CONCLUSION 

In this paper, a software reliability model is presented 

using the SDE method to construct confidence intervals 

regarding the mean value function whose variance is 

assumed to stem from the error detection rate. It can 

assist software developers in determining optimal release 

times at different confidence levels. From the inference 

procedure,, the effects of time on the error detection rate 

and the variance in the mean value function would be 

crucial to the shapes and confidence intervals regarding 

the mean value function. 

Future research may estimate the unknown parameters 

in the proposed model through expert opinions due to the 

lack of historical data, and this can be conducted by using 

a Bayesian decision approach coupled with the proposed 

model. 
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