
Confidence Interval Estimation of Software

Reliability Growth Models based on Ohba’s

Inflection S-shaped Model

Tean-Quay Lee and Chih-Chiang Fang
Department of Information Management, Shu-Te University, Taiwan, R.O.C.

Email: tqlee@stu.edu.tw; ccfang@stu.edu.tw

Chun-Wu Yeh
Department of Information Management, Kun Shan University, Taiwan, R.O.C.

Email: davidyeh929@gmail.com

Abstract—Software reliability growth models with

confidence intervals (SRGMs) are often utilized in software

industry in that they provide useful information for

software developers to decide the optimal software release

time and to refine the quality of software testing tasks. Most

SRGMs, nonetheless, do not have transparent explanations

for the variance estimation of cumulative software errors.

They might not be effective in deducing the confidence

interval regarding the mean value function. In such cases,

software developers cannot estimate the possible risk

variation of software system by using the randomness of

mean value function, and it might debase the practicability

of applications. In this paper, we utilize Ohba’s Inflection S-

shaped model to build the SRGM with confidence intervals

that can assist the software developers in determining the

optimal release time.

Index Terms—Software Reliability Growth Model; software

reliability; confidence intervals; stochastic differential

equations; Non-homogeneous Poisson process

I. INTRODUCTION

Software reliability engineering is critical in software

industry, since it can offer products with high

performance and provide useful information for software

developers and testing staff during the testing/debugging

phase. How to improve the reliability and reduce the cost

of software systems is the main issue of the software

industry [1]. Software developers need to decide the

optimal software release time, refine the quality of

software testing tasks, and control related software

testing/debugging cost by means of software reliability

growth models (SRGMs) to ensure the software

functionality. Generally, these software reliability growth

models in previous literature are discussed in several

kinds of probability distributions such as Exponential-

shaped, S-shaped, and a mix of the two [2]. The software

failure phenomena are mostly examined based on the

Non-homogeneous Poisson Process (NHPP). The

exponential SRGM that Goel and Okumoto [1] proposed

Manuscript received June 17, 2013; revised August 30, 2013.

is effective to portray the fault-detection process of

software. In addition, quite a few of generalizations or

modifications of SRGMs have been proposed in that the

curve of cumulative number of faults detected is often

associated with Exponential-shaped or S-shaped mean

value functions. For instance, the delayed S-shaped

reliability growth models proposed by Yamada et al. [3]

and Yamada [4]. An inflection S-shaped reliability

growth model was proposed by Ohba [5] and [6]. Pham

and Zhang [7] proposed a software reliability model that

combines testing coverage measures to assess the

software reliability. Huang [8] joins a generalized logistic

testing-effort function and the change-point parameter for

analyzing system performance in their proposed model.

These models may be applicable to specific types of

software failure data but not considering the learning

effect during the software-debugging process. If the

software companies cannot afford more budget for testing

and debugging, the raise of software reliability is rely on

the learning effect of software developers. The learning

effect here signifies that the debugging efficiency of

software developers increases in the process due to the

experience of detecting previous software errors without

purchasing new equipments or introducing new

techniques. Besides, the cost trade-off of fault detection

and software release time affects the competitiveness of

the software companies. How to correctly estimate the

interval of mean value functions is the main focus of this

study. Since the number of software errors is finite, there

should be less software errors to be detected with time.

The variance of cumulative software errors should be

decreasing instead of increasing with time. Tamura and

Yamada [9] proposed the concept that the variance of the

mean value function stem from the error detection

process and used stochastic differential equations method

(SDE) to deduce the mean value function. These

mentioned models still have some problems even though

SDE is effective in evaluating the mean value function.

For example, Yamada et al. [10] proposed a simple

SRGM by applying an Itô type of SDE where the error

detection rate is constant, but the error detection rate

196

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/jiii.1.4.196-200

would vary over time in practice. Lee et al. [11]

developed an SRGM by using an Itô type SDE based on

the delayed S-shaped and the inflection S-shaped models

respectively proposed by Yamada et al. [3] and Ohba [6],

without considering the variance in the mean value

function. This may be an important factor to measure

testing costs during the testing phase. Tamura and

Yamada [9] derived a flexible SDE model to describe the

fault-detection process by using an inflection S-shaped

SRGM and an Itô type SDE [12], but such a model

improperly presents the expectation and variance of the

mean value function, and lacks a complete process for

obtaining the parameters of the model.

Hence, discovering the confidence intervals of

software reliability can enhance the decision of software

releases and control the related expenditures for software

testing. Yamada and Osaki [13] considered that the

maximum likelihood estimates (MLE) concerning the

confidence interval of the mean value function can be

estimated by traditional NHPP method. Yin and Trivedi

[14] obtained the confidence bounds for the model

parameters via the Bayesian approach by quoting the

estimation method of Yamada and Osaki [13]. Huang [8]

also adopted the method of Yamada and Osaki [13] to

draw a graph to illustrate the confidence interval of the

mean value function.

The possible reason of existing improper variances lies

in the misconception that merely the randomness of the

mean value function should account for the final

estimation error of software reliability. This turns out that

the variance of mean value function will increase in time.

However, since the number of software errors is finite,

there should be less software errors to be detected with

time. Therefore, the variance of cumulative software

errors should be decreasing instead of increasing as time

goes by. In this regard, it is assumed that the variance in

the mean value function mainly stems from the error

detection process in this study, and the confidence

interval of the mean value function would thus diminish

as remaining software errors decrease.

According to the above discussion, several SRGMs

with confidence intervals by using the method of SDE

will be proposed in this study. The proposed SRGMs

with confidence intervals could assess the variance in the

mean value function more reasonably, and assist software

developers in properly dealing with the risks of software

reliability estimation.

II. MODEL DEVELOPMENT

Various software reliability growth models have been

proposed in the last two decades, and some of these

models were fairly effective in prediction of the average

number of cumulative software errors during the testing

task. These models based on non-homogeneous Poisson

process include Goel and Okumoto’s model (1979) [15],

Yamada’s delayed S-shaped model (1983) [3], Ohba’s

inflection S-shaped model (1984) [6], Musa exponential

model (1985) [16], Chiu and Haung’s learning effect

model (2008) [17]. Table I shows the corresponding

mean value functions and the error detection rate

functions for the five classic models.

TABLE I. SUMMARY OF MEAN VALUE AND ERROR DETECTION RATE

FUNCTIONS FOR THE CLASSIC MODELS

Model
Mean value function and error

detection rate function

Goel and Okumoto’s model

(1979)[15]

() (1)btm t a e 

()d t b

Yamada’s Delayed S-

shaped model (1983)[3]

() (1 (1))btm t a bt e  

2

()
(1)

b t
d t

bt




Ohba’s Inflection S-shaped

model (1984)[6]

1
()

1

bt

bt

e
m t a

ce





 
  

 

()
(1)bt

b
d t

ce




Musa Exponential Model
(1985)[16]

() 1

ct

nLm t a e

 
 
 

 
  

 
 

() td t re  

Chiu and Haung’s learning

effect model (2008)[17]

()

1

() 1
t

m t a

e  










 
 

  
  
 

()
() () 1

t
d t

e  


 

 

 
   

 

The following notations will be used to deduce the

model of this study:

Notations:
a : the expected number of all potential errors in the

software system before the software testing begins

()m t : the mean value function of the software error

detection process, which is the expected number of errors

detected within time (0,)t

()M t : the function of the residual software errors at

time t

()d t : the error detection rate per error at time t

()W t : the variable for Wiener process

 : the standard deviation stems from testing process,

and it is a positive constant to denote the magnitude of

the irregular fluctuation.

Due to the fact that the above-mentioned models in

Table I lack of the discussion about the corresponding

confidence intervals, the decision makers cannot evaluate

the possible variation in the mean value function itself

during the testing task. Accordingly, we use the models in

Table I as basis to develop their corresponding

confidence intervals of the mean value function.

According to the behavior of testing and debugging,

we assume the irregular fluctuation is influenced by the

error detection rate, and it can be represented by the

following stochastic differential equation:

197

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

Let () ()M t a m t  , ()
1 bt

b
d t

ce




 
d ()

()+ () ()
d

M t
d t dW t M t

t
 

 

d ()

d ()+ ()
()

M t

t d t dW t
M t

 

Let  () ln ()Z t M t

According Itô’s calculus:

21
d () () () d d ()

2
Z t d t t W t 

 
     
 

2

0 0 0 0

1
d () ()d d d ()

2

T T T T

Z t d t t t W t       

∵
0 0

(1)
()d d ln

1 1

bT
T T

bt bT

b c e
d t t t

ce ce



 

  
    

  
 

∴
2

0 0 0

(1) 1
d () ln d d ()

1 2

bT
T T T

bT

c e
Z t t W t

ce
 





 
   

 
  

 

2

0 0

ln ()

(1) 1
ln d d () Constant

1 2

bT
T T

bT

M T

c e
t W t

ce
 







 
   

 
 

21

() Constant
2

(1)
()

1

bT
T w T

bT

c e
M T e

ce

 


  








 
2

2

1
() Constant

2

1
Constant

()2

(1)
()

1

(1)

1

bT
T W T

bT

bT
T

W T

bT

c e
E M T E e

ce

c e
e E e

ce

 





  










 
  

 


   

∵

2
21

() 2 2
1

d
2

x
T

W T x TE e e e x e
T


 



 
 


     

 
2 21 1

Constant
2 2

Constant

(1)
()

1

(1)

1

bT
T T

bT

bT

bT

c e
E M T e e

ce

c e
e

ce

 











 








∵Initial condition: (0)M a

∴  Constant=ln a

∴  
(1)

()
1

bT

bT

c e
E M T a

ce





 
  

 

∴    
1

() ()
1

bT

bT

e
E m T E a M T a

ce





 
    

 

     
22() () () ()Var m T Var M T E M T E M T    

2

2

2 2 2 ()(1)
()

1

bT
T W T

bT

c e
E M T E a e

ce

 


 



  
          

 (It is

deduced by Itô’s calculus under the initial condition:
2 2(0)M a)

∵

2

22 () 2 22
1

d
2

x

W t x TtE e e e x e
t

  




 


     

2

2

2 2 (1)
()

1

bT
T

bT

c e
E M T a e

ce






 
       

 (1)

   

 

 
2

22

2

2

() ()

() ()

(1)
1

1

bT
T

bT

Var m T Var M T

E M T E M T

c e
a e

ce








   

 
  

 

 (2)

According to the above Equations, we have got the

general forms of the expectation  ()E m T and the

variance  ()Var m T of the mean value function.

III. ESTIMATION OF PARAMETERS

Since the above model involve unknown parameters

which can be estimated from the observed data, the

method of maximum likelihood is utilized to estimate the

values of unknown parameters. The set of paired data

(,)
i i

T m can be collected in practice, where i
m is the total

number of errors detected until i
T . Also, suppose that the

unknown parameters of the specified SRGM are

determined by the 1n observed paired data:

0 0 1 1 2 2
(,),(,),(,),...,(,),

n n
T m T m T m T m then the likelihood

function for the SRGMs can be expressed as

   1
1

1 1 2 2 3 3

() (() ())

1

1 1

Pr{ () , () , () ,..., () }

() ()

()!

i i
i i

n n

m m m T m Tn
i i

i i i

L N T m N T m N T m N T m

m T m T e

m m




  



 

    







,

(3)

Taking a logarithm of the likelihood function, the MLE

of the unknown parameters can be obtained by

numerically solving the simultaneous equation

ln()

(unknown parameter 1)

L


 =

ln()

(unknown parameter 2)

L



= … =
ln()

(unknown parameter k)

L


=0.

IV. ESTIMATION OF CONFIDENCE INTERVALS

In this section, the relevant confidence intervals of the

SRGMs are developed; the confidence interval of the

mean value function can be developed using Equations (1)

and (2), which is given by

 
 

 

2

/2,
2

1

1
() [()] 1

CR n k n

i

i

T t
E m T t m T

n
t t







  


, (4)

where CR denotes the critical region, /2,CR n k
t

 denotes the

value providing an area 2CR of the Student-t

distribution with n k degrees of freedom.

198

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

However, in the classical model, owing to the different

expression of 2̂ , the confidence intervals that are

correspondent with Equation (4) would be somewhat

dissimilar. For instance, in the classical model, the

confidence interval of the mean value function is

expressed as

 
   

 

2
2

1

/2,
2

1

()
1

() 1

n

i i

i

CR n k n

i

i

m m t
T t

E m T t
n k n

t t







  
  

    
    

  




. (5)

Since the classical model assumes that the variance in

mean value functions stems from ()m T , whereas the

proposed model assumes that the variance in mean value

functions stems from ()d T , confidence intervals in the

classical model would be divergent in the late testing

phase, but convergent for the proposed model. This can

be explained by the fact that the possibility of finding

new software errors becomes lower due to less software

errors remaining in the late testing phase. In such a case,

the variance in mean value functions turns out to be fewer

in the proposed model, which is opposite to the case in

the classical model.

V. DECISION FOR OPTIMAL SOFTWARE RELEASE

In practice, software developers would like to know

when the software testing should be stopped so that the

related costs can be minimized and the requirement of

software quality can be met. In general, the longer the

testing time the more reliable the software. However, a

longer testing time will increase costs and lead to the loss

of commercial opportunities. Therefore, optimal release

policies are of practical importance for software

developers.

In order to minimize the total testing cost and meet the

minimal requirement of software reliability, the optimal

software release model can be formulated as:

   

    2

0 1 2

3 4 1

0

 () ()

 1 (/)

 : (/)

y

v

Min E C T C C T C E m T u

C R x T C v T

Subject to R x T R

  

   



, (6)

where
0C is the set-up cost for software testing,

1C is the

software routine cost per unit time,
2C is the cost of

removing an error per unit time during testing,
3C is the

loss due to software failure,   2

4 1

v
C v T is the loss of

commercial opportunities due to postpone software

release.
0R is the minimum requirement of software

reliability for avoiding a premature software release.

Note that the optimal software release time can be

determined using Equation (6), but it only fits for an

average case. However, in the worst case scenario,

software reliability might not reach the expected level if

the software debugging is not effective. Therefore,

software developers should give a conservative

estimation of software reliability. Consequently, the mean

value function  ()E m T and the software reliability

function (/)R x T in Equations (6) should be changed to

expressions in terms of lower boundaries ()CR

LBm T and

(/)CR

LBR x T given a specified critical region CR , and

therefore the expected total software testing cost in the

worst case can be rewritten as:

 

    2

0 1 2

3 4 1

0

 () ()

 1 (/)

 : (/)

CR CR

LB LB y

vCR

LB

CR

LB

Min E C T C C T C m T u

C R x T C v T

Subject to R x T R

  

   



,
(7)

Decision makers can set an appropriate confidence

level to determine the optimal release time with

consideration of both software quality and costs during

the testing phase.

VI. APPLICATION

In this section, a numerical example is provided to

illustrate the determination of the optimal release policies.

Suppose that a software technology company acquires a

contract of developing a new work flow system. After the

end of the coding phase, the manager of the application

service provider has to identify an appropriate time to

release the software.

According to the evaluation from historical data and

domain experts, it is determined that Ohba’s inflection S-

shaped model would fit this case. The related parameters

of the model are as follows: the potential errors a are

about 4500 and the standard deviation of the detection

rate σ is 0.3112. The parameters b and c are 1.5 and 0.005,

respectively.

Besides, the staff in the testing department work a total

of 10 hours a day, 30 days a month. Other related cost

parameters are as follows:
0C =$2,000,

1C =$6,000,

2C =$12,000,
3C =$250000,

4C =$4,000, x =1 hours,
1v =2,

2v =1.6, and
yu =1 hour. In addition, the manager would

like to assure that the developed business application can

satisfy the minimal requirement of software reliability

(R0=0.9) with the 95% confidence level, and therefore

they need to identify the optimal software release times

for the average and worst cases.

By Equations (6) and (7) and spectrum analysis can be

used to obtain the optimal release time, the expected

testing cost, and expected reliability. As shown in Fig. 1,

in the average case, the optimal release time T* is 1.8

months after the testing/debugging work has started. The

expected testing cost is about $332505 and the expected

reliability can reach 0.9381, which meets the minimal

requirement of software reliability (R0=0.9). However, in

order to satisfy the software reliability at the confidence

level of 95%, it would be necessary to extend the

testing/debugging period and postpone the software

release. In order to ensure that the software quality meets

the requirement in the worst case situation, the decision-

199

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

maker should extend the time of testing and debugging

time from 1.8 months to 2.15 months, and the expected

testing cost is $342,595. The expected reliability reaches

0.92651.

Figure 1. Expected testing costs versus testing time in the average case
and the worst case

VII. CONCLUSION

In this paper, a software reliability model is presented

using the SDE method to construct confidence intervals

regarding the mean value function whose variance is

assumed to stem from the error detection rate. It can

assist software developers in determining optimal release

times at different confidence levels. From the inference

procedure,, the effects of time on the error detection rate

and the variance in the mean value function would be

crucial to the shapes and confidence intervals regarding

the mean value function.

Future research may estimate the unknown parameters

in the proposed model through expert opinions due to the

lack of historical data, and this can be conducted by using

a Bayesian decision approach coupled with the proposed

model.

REFERENCES

[1] H. Pham, Software Reliability, Springer, New York, 2000.

[2] P. K. Kapur, S. Anand, S. Yamada, and V. S. S. Yadavalli,
“Stochastic differential equation based flexible software reliability

growth model,” Mathematical Problems in Engineering, 2009.
[3] S. Yamada, M. Ohba, and S. Osaki, “S-Shaped software reliability

modeling for software error detection,” IEEE Transactions on

Reliability, vol. 32, pp. 475-484, 1983.
[4] S. Yamada, “Software quality/reliability measurement and

assessment: software reliability growth models and data analysis,”
Journal of Information Processing, vol.14, no.3, pp. 254-266,

1991.

[5] M. Ohba, “Inflexion S-shaped software reliability growth models,
Stochastic Models,” Reliability Theory, Osaki, S. and Hatoyama,

Y., Eds. Berlin, Germany: Springer-Verlag, pp. 144-162, 1984.
[6] M. Ohba, “Software reliability analysis models,” IBM Journal of

Research and Development, vol.28, pp. 428-443, 1984.

[7] H. Pham and X. Zhang, “NHPP software reliability and cost
models with testing coverage,” European Journal of Operational

Research, vol. 145, no. 2, pp. 443-454, 2003.

[8] C. Y. Huang, “Performance analysis of software reliability growth
models with testing-effort and change-point,” Journal of Systems

and Software, vol. 76: pp. 181-194, 2005.

[9] Y. Tamura and S. Yamada, “A flexible stochastic differential
equation model in distributed development environment,”

European Journal of Operational Research, vol. 168: pp. 143-152,
2006.

[10] M. Yamada, H. Kimura, and S. Osaki “Software reliability

measurement and assessment with stochastic differential
equations,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E77-A, pp. 109-116,
1994.

[11] C. H. Lee, Y. T. Kim, and D. H. Park, “S-shaped software

reliability growth models derived from stochastic differential
equations,” IIE Transactions, vol. 36, pp. 1193-1199, 2004.

[12] I. Karatsas and S. Shreve, Brownian Motion and Stochastic
Calculus, 2nd ed., New York: Springer-Verlag, 1997.

[13] S. Yamada and S. Osaki, “Software reliability growth modeling:

Models and applications,” IEEE Transactions on Software
Engineering, vol. 11, pp. 1431-1437, 1985.

[14] L. Yin and K. S. Trivedi, “Confidence interval estimation of nhpp-
based software reliability models,” in Proceedings 10th

International Symposium on Software Reliability Engineering,

1999, pp. 6-11.
[15] A. L. Goel and K. Okumoto, “Time-dependent fault detection rate

model for software and other performance measures,” IEEE
Transactions on Reliability, vol. 28, pp. 206-211, 1979.

[16] J. D. Musa, “Software engineering: The future of a profession,”

IEEE Software, vol. 2, no. 1, pp. 55-62, 1985.
[17] .K. C. Chiu, Y. S. Huang, and T. Z. Lee, “A study of software

reliability growth from the perspective of learning effects,”
Reliability Engineering and Systems Safety, vol. 93, no. 10, pp.

1410-1421, 2008.

Tean-Quay Lee is currently a lecturer in the

Department of Information Management at Shu-
Te University, Taiwan, R.O.C. He earned his M.S.

degrees from the Department of Computer Science

at Stevens Institute of Technology, U.S. His
research interests include decision analysis,

database, and soft computing.

Chih-Chiang Fang is currently an assistant
professor in the Department of Information

Management at Shu-Te University, Taiwan,
R.O.C. He earned both his M.S. and Ph.D. degrees

from the Department of Industrial and Information

Management at National Cheng Kung University.
His research interests include decision analysis,

data mining, and software engineering. Related
papers have appeared in such professional journals

as Naval Research Logistics, IEEE Transactions on Engineering

Management, Software Testing, Verification and Reliability, Computers
& Industrial Engineering, International Journal of Production

Economics, International Journal of Production Research, Decision
Support Systems and others.

Chun-Wu Yeh is currently an assistant professor

in the Department of Information Management,
Kun Shan University, Taiwan. He earned his Ph.D.

degree from the Department of Industrial and

Information Management at National Cheng Kung
University. His research interests include

operations management, data mining, machine
learning, and time series data analysis. Related

papers have appeared in such professional journals

as Computers & Industrial Engineering, Engineering Applications of
Artificial Intelligence, Expert Systems, Expert Systems with

Applications and others.

200

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

