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Abstract—In implicit surface, soft object modeling is getting 

popular because a complex soft object is able to be 

constructed easily by performing a soft (union) blend on 

primitive soft objects. Especially soft blend has lower 

computing complexity than other existing implicit blends 

because it dose addition operation only. However, in soft 

object modeling existing implicit blends still do not provide 

intersection blend containing blending range parameters for 

generating sequential blends, and precisely only intersection 

and union blends are developed. In order to solve this 

problem, this paper proposes two frameworks that can 

transform an existing union or intersection blend into a new 

family of Boolean set blending operations, including union, 

intersection, and difference blends. Based on the proposed 

frameworks, this paper has transformed scale function, 

developed from the scale method for an intersection blend, 

and soft blend, respectively, into two new groups of Boolean 

set blending operations with blending range parameters. 

The newly proposed Boolean set operations not only offer 

blending range parameters for blending range control but 

also have lower computing complexity and they especially 

can do bulge elimination in a union blend. 

 

Index Terms—soft object, implicit surface, blending 

operations, boolean set operations 

 

I. INTRODUCTION 

An implicit surface is defined as a level surface of a 

defining function of 3D position. Furthermore, a complex 

implicit surface is constructed like block-building game 

from some primitive surfaces, such as planes, sphere [1], 

super-ellipsoids [2]-[3], star-solids [4]-[5], and sweep 

objects [6]-[7] through sequential blending operations. 

This is why implicit surface modeling is attracting much 

attention. In fact, blending operations play an important 

role in creating a complex implicit surface because they 

are able to connect primitive implicit surfaces smoothly 

with automatically generated transitional surface. The 

literature of blending operations is reviewed as follows: 

(a).Pure Boolean set operations [8], Max/Min, have C
0
 

continuity, so they always generate non-smooth 

blending surfaces. Super-ellipsoidal blends [8] offer 

Boolean set operations with high-order continuity, C
n
, 

n1. But, they deform blended primitives entirely. 

                                                           
Manuscript received June13, 2013; accepted August 24, 2013. 

(b).To make blended primitives deform locally after 

blending, blending operations with blending range 

control were proposed in [9]-[19]. They provide 

blending range parameters to adjust the size of the 

transitional surface of the resulting blending surface, 

so blended primitives are able to deform locally after 

blending. 

(c).To reduce the computing complexity, soft object 

modeling was also proposed. Because soft objects are 

defined as a level surface of a non-negative field 

function, they can be blended easily by performing 

addition only, called soft blend, for a union. Existing 

field functions in the literature can be found in [1]-[2], 

[20]-[22]. In addition, set operations were proposed 

[23] for blending soft objects, but they do not offer 

blending range parameters. Therefore, union and 

intersection blends with blending range parameters 

were proposed [9], [13], [22] for local blending on 

soft objects.  

Soft object modeling has lower computing complexity 

in blending than other implicit modeling techniques, 

however it still faces a problem that so far no difference 

blend with blending range parameters has been developed. 

Although Perlin’s set operations [23] offer a difference 

blend, they do not provide blending range parameters. To 

solve the problem, this paper: 

(a).Proposes a framework that can transform an existing 

intersection blend into a new set of Boolean set 

operators for blending soft objects. 

(b).Proposes a framework that can transform an existing 

union blend into a new set of Boolean set operators 

for blending soft objects. 

(c).Applies scale function as an intersection blend [13] 

and soft blend as a union blend, respectively, into the 

proposed frameworks. As a result, two new sets of 

Boolean set operators are created. Especially, the set 

created from the former blend offers blending range 

parameters and the set from the latter one has lower 

computing complexity. 

The rest of the paper is organized as follows. Soft 

object modeling is reviewed in Section II. The proposed 

frameworks are presented in Section III. Based on the 

frameworks in Section III, Boolean set operators with 

blending range parameters are derived in Section IV. 

Conclusion is given in Section V. 
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II. SOFT OBJECT MODELING 

This section reviews soft object modeling.  

A. Definition of a Soft Object 

A primitive soft object is defined using a primitive 

defining function fi(v) by the point set  

{vR
3 

| fi(v)0.5}, i=1,2,…, 

which is also represented as fi(v)0.5 and whose 

boundary surface (shape) is represented as a level surface 

by fi(v)=0.5 or fi=0.5 for short in this paper. Besides, 

symbol v stands for a point in R
3
 in this paper. 

For soft objects, defining function fi(v) above is 

required to be a non-negative field function. A field 

function is required to map R
3
 to [0, 1] and is usually 

written as composition of P(d) and di(v) by  

fi(v)=(P。di)(v)=P(di(v)), 

di(v)=L/Ir, 

where  

(a).di(v):R
3
→R+ is called distance function, where R+ 

stands for {xR
 
|x0} in the paper. As shown in Fig. 

1(a), L is the shortest distance from point v to the 

center c of a soft object fi(v)0.5. Ir is the influential 

radius of di(v)=1 with respect to v, and it is the 

distance from center c to point I, the intersecting point 

of vector v=[x,y,z] with the boundary of the 

influential region di(v)1. 

(b).P(d):R+→[0,1] is called potential function which 

decreases to zero as the value of d increases from 0 to 

1, as shown in Fig. 1(b). As a result, the value of 

fi(v)=P(di(v)) decreases from 1 to 0 as the value of 

di(v) increases from 0 to 1, i.e. as the value of L 

increases from 0 to the influential radius Ir. Some 

special requirements for a field function are presented 

in [1], [20]-[22] for blending range control. 

 
di(v)<=1

v=(x,y,z)

c

I

fi(v)=P(di(v))=0.5, di(v)=0.5
The boundary of soft object

x

y
5.0/ cIcv

I

0.5<=di(v)<=1

The influential region:

f(v)=0 or P(di(v))=0

0<=fi(v)<=0.5

 
(a)                                                 (b) 

Figure 1.  (a). Definition of a distance function di(v). (b).Shapes of a 
potential function p=P(d) as the value d increases from 0 to 1. 

B. Blending Operations on Soft Objects 

In order to create a more complex soft object, blending 

operations, i.e. implicit blends, were also proposed. An 

implicit blend can smoothly connect k primitive soft 

objects f1(v)0.5,..., and fk(v)0.5 via a blending operator 

Bk(x1,...,xk) and it is written by  

{vR
3
 |Bk(f1(v),...,fk(v))0.5}, 

which is denoted as Bk(f1,...,fk)0.5 in the following. 

Surface Bk(f1(v),...,fk(v))=0.5 is called blending surface.  

Some existing blending operators are reviewed as 

follows: 

(a). Soft blend (union blend) BSk:[0,1]
k
→[0, k] [1]: 

                              BSk(x1,…,xk)=x1+x2+…+xk;              (1) 

Because gradiets fi(v), i=1 to k, are zeros where fi(v) 

=0, BSk(f1,…,fk)=0.5 have a smooth nuion blend surface. 

(b). Super-ellipsoidal union and intersection blends BUk: 

R+
k
→R+ and BIk:R+

k
→R+ [8]: 

BUk(x1,…,xk)=(x1
p
+…+xk

p
)

1/p
,  and  

BIk(x1,…,xk) =(x1
-p

+…+xk
-p

)
 -1/p

 

where p is a curvature parameter to adjust the shape of 

the transition of the resulting blending surface.  

(c). Scale function BA2(x1,x2):R+
2→R+ with blending 

range parameters r1 and r2 and a curvature parameter p 

for an intersection blend, from the scale method [13], 

is written by  

BA2=

otherwise

IIIregion   ),( and 0 if   

IIIregion   ),( and 0 if   

),(

/

)2/())4((

21

21

21

5.02

















xxa

xxa

xxMin

bc

aacbb

  

(2) 

where a=(1+2r2)r1
2
+(1+r1)

2
r2

2
+2p, b=-2(x2(1+r2)r1

2
+ 

x1(1+r1)r2
2
+(x1+x2)p), and c=r1

2
x2

2
+r2

2
x1

2
+2px1x2. In 

addition, the value of BA2 must lie in [h1, h2], h1= 

Min(x1,x2) and h2=(r1 x2+r2x1)/(r1+r2+r1r2), and region 

III is defined by {(x1,x2)|x1/(1+r1)<x2<(1+r2) x1}. 

Moreover, scale function for a union blend can also be 

found in [13]. 

 In fact, a blend Bk(f1,...,fk)0.5 is allowed to further be 

reused as a new primitive in other blends to generate 

sequential blends. For example, Fig. 2(a) shows a cube 

which is created using sequential intersection blends of 

three pairs of parallel planes by B2(B2(f1(v),f2(v)),f3(v)) 

0.5; Fig. 2(b) displays sequential union blends of four 

cylinders fi(v)0.5, i=1,2,3 and 4, by B2(B2(B2(f1(v),f2(v)), 

f3(v)),f4(v))0.5 with bulge elimination [13]. 

      
(a)                                    (b) 

Figure 2.  . (a). Sequential intersection blends of three pairs of parallel 
planes. (b). Sequential union blends of four cylinders with bulge 

elimination. 

III. THE FRAMEWORK FOR DEVELOPING BOOLEAN SET 

OPERATIONS 

In addition to those implicit blends stated in Section II, 

Perlin also proposed Boolean set operations for soft 

object modeling [20], which are written by:  

(a). Intersection:  BI2(x1, x2)=x1x2. 

(b). Union:  BU2(x1, x2)=x1+x2-x1x2. 
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(c). Difference of x1 from x2:  BD2(x1, x2)=x1-x1x2.  

A. Requirement for a Blending Operator to Develop 

Boolean Set Operators from Its Complement  

From Perlin’s Boolean set operators above, it is 

obtained that:  

If the range of a blending operator Bk(x1,...,xk) lies 

completely in the interval [0, 1], then:  

(a).The complement of a soft object fi(v)0.5 is given by 

fi(v)0.5, equivalent to 1-fi(v)0.5 because the range 

of a field function fi(v) always lies completely in the 

interval [0, 1]. This implies that 1-fi(v) can be used as 

a defining function of the complement of a soft object 

fi(v)0.5.  

(b).The defining function of the complement of a 

blending operation Bk(f1,...,fk)0.5 can be given by 1- 

Bk(f1,...,fk) and Bk(f1,...,fk)0.5 can be reused as a new 

blended primitive in sequential blends because the 

range of Bk(f1,...,fk) lies in the interval [0, 1]. 

(c). Suppose Bk(f1,...,fk) is an intersection, then it can 

derive a new family of Boolean set operations from 

its complement 1-Bk(f1,...,fk) and dual form by 

(1). Intersection blend: Bk(f1,...,fk). 

(2). Union blend: 1-Bk(1-f1,...,1-fk).  

(3). Difference blend : Bk(f1,1-f2,...,1-fk). 

These above also prove how Perlin’s set operators are 

derived from the complement of BI2(f1, f2) as follows: 

(1). Intersection: BI2(f1, f2)=f1f2. 

(2). Union:  BU2(f1, f2)=1-BI2(1-f1, 1-f2)=f1+f2-f1f2.  

(3). Difference:  BD2(f1, f2)=BI2(f1, 1-f2)=f1-f1f2. 

However, some bending operator’s value might be 

over 1, such as soft blend BSk(x1,…,xk) in (1). In addition, 

their domains might be defined on non-negative space, so 

the value of the complement 1-BSk(x1,…,xk) of a soft 

blend may be less than 0 and outside of their domain, 

which might cause a computational problem. Thus, a 

framework is proposed in the following two subsections 

to avoid the problem, and in particulr it can be used to 

develop a new family of Boolean set operators from the 

complement of an existing blending operator. 

B. Framework for Developing Boolean Set Operators 

from an Intersection Operator 

Step (1):  

Obtain an intersection operator BIk(x1,…,xk):R+
k
R+. 

Step (2):  

If the value of BIk(1,…,1) is less than 1, then develop 

an increasing normalization function NS(u) which 

satisfies the following conditions: NS(0)=0, NS(0.5)= 0.5 

and NS(BIk(1,…,1))=1.  

Step (3):  

Since operator NS(BIk(x1,…,xk)) maps [0,1]
k
 [0,1]...  

[0,1] into interval [0, 1], according to Subsection A, a 

new family of Boolean set operations is developed from 

the complement and dual form of NS(BIk(f1,…,fk)) as 

follows: 

(1). Intersection blend:  NS(BIk (f1,…,fk)).  

(2). Union blend:  1-NS(BIk(1-f1,… ,1-fk)).  

(3). Difference blend of soft object f10.5 from soft 

objects fi0.5, i=2,...,k:  NS(BIk(f1, 1-f2 , …, 1-fk)).  

The reasons why conditions of Step (2) need to be 

satisfied are explained below: 

(a).Condition NS(0.5)=0.5 ensures that blending surface 

NS(BIk(f1,…,fk))=0.5 is always the same as the original 

blending surface BIk(f1,…,fk)=0.5 after normalization. 

(b).If BIk(1,…,1) is less than 1, then 1-BIk(1,…,1) is larger 

than 0, which implies that the value of newly derived 

union operation 1-NS (BIk(1-f1,… ,1-fk)) may be larger 

than 0 at (f1,…,fk)=(0,...,0). It causes that union blend 

1-NS(BIk(1-f1,…,1-fk)) might enlarge other blended 

primitives in non-blending region when performing a 

soft blend with other soft objects. This explains why 

condition NS(BIk(1,…,1))=1 for NS(u) must be 

satisfied if BIk(1,…,1) is less than 1.  

C. Framework for Developing Boolean Set Operators 

from a Union Operator 

It includes three steps as follows: 

Step (1): Obtain 

A union operator BUk(x1,…,xk):R+
k
 R+. 

Step (2):  

If the value of BUk(1,…,1) is larger than 1, then 

develop an increasing normalization function NA(u) 

which satisfies the following conditions: NA(0)=0, NA(0.5) 

=0.5, and NA(u)=1 and NA
(u)

(u)=0 for all u1.  

Step (3):  

Since NA(BUk(x1,…,xk)) maps [0,1]
k
 into interval [0, 1], 

then according to Subsection A, a new set of Boolean set 

operations is obtained from the complement and dual 

form of NA(BUk(x1,…,xk)) as follows: 

(1). Intersection blend: 1-NA(BUk (1-f1,…,1-fk)). 

(2). Union blend: NA(BUk(f1,…,fk)). 

(3). Difference blend of object f10.5 from objects 

fi0.5, i=2,...k: 1-NA(BUk(1-f1, f2 ,…,fk)). 

The reasons why conditions of Step (2) need to be 

satisfied are explained below: 

(a).Condition NA(0.5)=0.5 ensures that union blending 

surface NA(BUk(f1,…, fk))=0.5 is still the same as the 

original blending surface BUk(f1,…,fk)=0.5 after 

normalization, 

(b).If the value of BUk(1,…,1) is larger than 1, then 1-

BUk(1,…,1) is less than 0. As a result, the value of 

newly derived intersection 1-NA(BUk(1-f1,…,1-fk)) 

may be less than 0 at (0,...,0), and hence intersection 

blend 1-NA(BUk(1-f1,…,1-fk)) might shrink other 

primitives in non-blending regions when performing  

a soft (union) blend with other soft objects. Regarding 

this, condition: NA(u)=1 holds for all u1 can prevent 

intersection blend 1-NA(BUk(1-f1,…,1-fk)) from 

shrinking other blended primitives when 1-NA(BUk(1-

f1,…,1-fk)) is reused as a new primitive in a soft blend. 

Besides, condition: NA
(u)

(u)=0 hold for u1 ensures 

that gradient (NA(BUk(f1,…,fk)) are zeros where 

points are on surface NA(BUk(f1,…,fk)) =1 and hence 

gradient (1-NA(BUk(1-f1,…,1-fk))) are zeros where 

points are on surface 1-NA (BUk(1-f1,…, 1-fk))=0. As a 

result, when intersection blend 1- NA(BUk(1-f1,…,1-fk))) 
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or difference blend 1-NA (BUk(1 -f1, f2,…,fk)) is reused 

as a new primitive in a soft blend, they have a smooth 

union blending surface with other blended primitive. 

IV. NORMALIZATION FUNCTIONS 

Based on the conditions of the framework in Section 

III, this section proposes two normalization functions, 

respectively, for an intersection blend and a union blend. 

A. Normalization Function for an Intersection Operator 

Following the conditions stated in Step (2) in 

Subsection B of Section III, a normalization function NS(u) 

that maps [0, m], where m=BIk(1,…,1)<1, to [0, 1] is 

proposed as follows: 

NS(u)











5.0

5.0)5.0( 2

uu

muuuA
,        (3) 

where A is (1-m)/(m-0.5)
2
 and NS

(u)
(u) is continuous at 0.5. 

Consequently, Ns(u) is differentiable in R+.  

Because scale function BA2(x1,x2) in (2) is an 

intersection blend and the value of BA2(1, 1) is less than 0, 

according to the framework applying NS(u) in (3) on 

BA2(x1,x2) by NS(BA2(x1,x2)) gives a new set of Boolean set 

operations with blending range parameters r1 and r2 and a 

curvature parameter p, called scale set operations, as 

follows: 

(a). Scale union blend:       1-NS(BA2(1-f1, 1-f2)).  

(b). Scale intersection blend:  NS(BA2(f1, f2)). 

(c). Scale difference blend:   NS(BA2(f1, 1-f2)).  

where BA2(x1, x2) and NS(u) are defined in (2)-(3). 

Scale set operations provide blending range parameters, 

and they not only provide a difference blend but also can 

perform bulge elimination in a scale union blend by 

replacing blending range parameters ri in BA2(x1, x2) with 

ri= ri(1-cos+),  i=1 and 2, 

where ri <0.5 and 0 and   is the angle between the 

gradients of f1(v) and f2(v). 

  
      (a)                                 (b) 

Figure 3.  Objects created by a scale difference of large crossing 
cylinders from small one by 1-NS(BA2(1-f1, 1-f2)): (a). Without 

performing bulge elimination. (b). with bulge elimination on the marked 
region. 

For example, Fig. 3(a) shows that a scale union of a 

small pair of crossing cylinders, S1=1-NS(BA2(1-f1,1-f2) 

=0.5, is subtracted from a scale union of a large pair of 

crossing cylinders, S2=1-NS(BA2(1-f3, 1-f4))=0.5, via a 

scale difference NS(BA2(S2, 1-S1)) without performing 

bulge elimination. Fig. 3(b) shows an object like that in 

Fig. 3(a), but it performs bulge elimination on the marked 

square region. 

B. Normalization Function for a Union Operator 

Following the conditions stated in Step (2) in 

Subsection C of Section III, a normalization function 

NA(u) that satisfies the conditions: NA
(u)

(1)=0, NA
(u)

(0.5)=1, 

and NA
(u)

(u)=0 for all u1, is proposed as follows: 

NA(u)
















5.0

15.0)1(41

11
2

uu

uuu

u

,         (4) 

It is easy to prove that NA(u) is continuous and 

differentiable at 1 and 0.5. Consequently, NA(u) is 

differentiable in R+. 

Because soft blend BSk(x1,…,xk)=x1+x2 +…+xk in (1) is 

a union operator and the value of BSk(1,…,1)=k is greater 

than 1, according to the framework applying NA(u) in (4) 

on BSk(x1,…,xk) by NA(BSk(x1,…,xk)) gives a new set of 

Boolean set operations, called soft set operations, as 

follows: 

(a). Soft intersection blend: 1-NA(BSk(1-f1,…,1-fk))=1-NA 

(k- f1 -…-fk)). 

(b). Soft union blend:  NA(BSk(f1,…,fk)=NA(f1+… +fk). 

(c). Soft difference blend of soft objects f10.5 from 

fi0.5, i=2,...k: 1-NA(BSk(1-f1, f2 ,…,fk)) = 1-NA(k -f1 +f2 

+…+ fk)). 

Fig. 4 sketches the shapes of binary soft set operators: 

1-NA(BS2(1-x1,1-x2))=0.5, NA(BS2(x1,x2))=0.5 and 1-NA(BS2 

(1-x1,x2))=0.5. Their shapes explain why soft set operators 

can be used as Boolean set operators and blend soft 

objects smoothly. 

     
1

1

0.5

0.5

x
1

x
2

NA(BS2(x1,x2))=0.5

1-NA(BS2(1-x1,x2))=0.5

1-NA(BS2(1-x1,1-x2))=0.5

(0,0)  
Figure 4.  The shapes of the blending curves of binary soft set 

operators: 1-NA(BS2(1-x1,1-x2))=0.5, NA(BS2(x1,x2))=0.5 and 1-NA(BS2(1-

x1,x2))= 0.5. 

Fig. 5 demonstrates a die created via a soft difference 

1-NA(BSk(1-f4, f5 ,…,f25))0.5, where f4=1-NA(BSk(1-f1, 1-f2, 

1-f3))0.5 is a cube like that in Fig. 2(a) and f4 is defined 

by a soft intersection on 3 pairs of parallel planes, and 

f50.5 ,…, and f250.5 are 21 balls. 

 
Figure 5.  A die defined by a soft difference 1-NA(BSk(1-f4, f5 ,…,f25)), 
where f4=1-NA(BSk (1-f1,…, 1-f3))  is a cube defined by soft intersection 

and f5 ,…, and f25 are balls. 
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Here is an example demonstrating combination of 

scale and soft set operations. Fig. 6 displays a complex 

soft object which is a soft union NA(BS3(f1,f2,f3)) of  

sequential scale difference operations f1 and 2 cylinders f2 

and f3. f1 is given by NS(BA2(NS(BA2(f4, 1-f5)), 1-f6)), which 

represents a large ball f4 subtracted by a small ball f5 and a 

cylinder f6 sequentially. 

 

 

 

Figure 6.  Combination of scale and soft set operations, performing a 
soft union of sequential scale difference operations with two cylinders 

V. CONCLUSION 

In this paper, two frameworks have been proposed to 

transform an existing union or intersection blend into a 

new set of Boolean set blending operations, including 

union, intersection, and difference, for soft object 

modeling. Based on the proposed frameworks, two new 

sets of Boolean set operations for soft object modeling, 

called scale set operations and soft set operations, have 

been developed by using scale function and soft blend. 

Especially, scale set operations offer blending range 

parameters and allow bulge elimination in a difference or 

a union blend, and soft set operations have lower 

computing complexity. More importantly, a new 

difference operation with blending range parameters has 

been created, and hence soft object modeling has a 

complete set of Boolean set operations for generating 

sequential blends. 
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