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Abstract—Spectrum-based Fault Localization (SBFL) is a 

popular fault localization technique that ranks statements in 

a program according to their suspiciousness to be faulty 

based on the statement execution records (spectra) of pass 

and fail test cases. Many SBFL metrics have been proposed 

with varying accuracies in ranking of faulty statement. In 

this paper we proposed a new SBFL metric based on a pair 

scoring approach.  We evaluated the performance of the 

proposed metric and compare it with other existing SBFL 

metrics. Despite its simplicity, we found the proposed metric 

outperformed majority of the existing SBFL metrics.  

 

Index Terms—Software Engineering, Software Testing, 

Debugging, Spectrum-based Fault Localization 

 

I. INTRODUCTION 

Software testing and debugging are the most expensive 

but necessary activity in software development life cycle 

for software quality assurance [1] and [2]. In the software 

development process, faulty statement in software code 

may lead the software failures such as crash or incorrect 

outputs and results. The task to determine and find the 

faulty statement is called fault localization. In a software 

system with thousands of lines of code, it will be very 

time consuming for the software developer to locate the 

faulty statement. Researchers in software debugging have 

designed effective ways to find the fault statement 

through fault localization approaches.  

One of the popular in software debugging approaches 

is Spectrum-based Fault Localization (SBFL) [3]-[8]. In 

SBFL, the statement execution record (spectra) of pass 

and fail test cases are analyzed to assist software 

developer to locate the faulty statement. SBFL metrics 

have been formulated to rank the statements in software 

code according to their likeliness to be the faulty 

statement. In SBFL, statement with the highest score 

calculated by the SBFL metric will be ranked first for 

inspection as it is the most suspected statement that might 

be the faulty statement. On the other hand, the statement 

with the lowest score is the safest statement as it is most 

unlikely to be the faulty statement. Through this ranking, 

software developer can inspect the top ranking statement 

first to locate the faulty statement rather than checking 
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statement by statement from the beginning until the end 

of the software code.  

The performance of SBFL metric is measured by how 

fast it leads software developer to the faulty statement. 

This is determined by how high it ranks the faulty 

statement based on the score calculated from the SBFL 

metric. Every SBFL metric is designed differently to rank 

the suspected statement. This makes every SBFL metric 

unique and has different capability in fault localization. 

In this paper we propose a new SBFL metric named 

pair scoring. This technique works by comparing the 

execution paths of a pair of pass and fail test cases and 

assign score to each statement according to its likeliness 

to be the faulty statement. All possible combinations of 

pass and fail test cases are paired for scoring and the total 

score for each statement is used to rank the statement for 

its likeliness to be faulty. We evaluated the performance 

of the proposed metric on real life software artifacts and 

compare it with other existing SBFL metrics. Despite its 

simplicity, we found the proposed metric outperformed 

majority of the existing SBFL metrics. 

The remaining of this paper is organized as follow: 

Section II outlines the preliminaries of Spectra-based 

Fault Localization (SBFL), the test objected used and the 

existing SBFL metrics studied in this paper for 

comparison with the proposed SBFL metric. The new 

SBFL is presented in Section III. Section IV describes the 

experiments conducted to evaluate the performance of the 

proposed metric and compares it with other existing 

SBFL metrics. Section V discusses the findings and 

Section VI concludes the paper.  

II. PRELIMINARIES 

Program spectra refer to information about statement 

executions by test cases. Four common coefficients are 

computed as the spectrum for each statement. These 

coefficients are aef, anf, aep, and anp. The first 

coefficient, aef, represents the number of fail test cases 

that have executed the statement, whereas the second 

coefficient, anf, represents the number of fail test cases 

that have not executed the statement. Similarly, the third 

coefficient, aep, represents the number of pass test cases 

that have executed the statement (as illustrated in Fig. 1), 

whereas the last coefficient, anp, represents the number 

of pass test cases that have not executed the statement. 

Intuitively, a faulty statement will have high values for 

aef and anp and low values for anf and aep.  
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Figure 1.  Illustration of aef coefficient. 

Based on coefficients aef, anf, aep, and anp, a SBFL 

metric is used to compute a score for every statement to 

rate its likeliness to be faulty. The statements are then 

ranked from the highest score to the lowest score. To 

locate the faulty statement, a software developer will 

inspect the highest ranked statement first followed by the 

lower ranked statements until the faulty statement is 

located. Therefore, a good SBFL metric will rank faulty 

statement high so that only few statements need to be 

inspected before the faulty statement is successfully 

located. Hence the performance of a SBFL metric is 

commonly measured with the percentage of code 

inspected (pci) before the faulty statement is successfully 

located. 

           
(1) 

A. Testing Subject 

The programs in Siemens Test Suite have been 

selected as our subject programs to evaluate the 

performance of the new SBFL metric. Programs in 

Siemens Test Suite are commonly used to benchmark the 

performance of SBFL metrics [9]-[12]. It is 

downloadable from the Software Information Repository 

[13]. Siemens Test Suite contains seven programs. Each 

program has one original correct version and multiple 

faulty versions of the program. The test case execution 

scripts are included for each program. Table I shows the 

specifications of programs in Siemens Test Suite which 

include names of the programs, total faulty versions, total 

lines of code, number of test cases, description of the 

program, and list of the excluded versions. 

In our experiment, all test cases will be executed for 

each program. We exclude print_tokens {v4, v6} because 

these versions are identical with the original correct 

version of the program, where no faulty statement exists. 

As we are focusing this study on single fault programs, 

print_tokens {v1}, replace {v21}, schedule {v2, v7}, and 

tcas {v10, v11, v15, v31, v32, v33, v40} are excluded 

because the multiple faulty statements exist in these 

versions. We also exclude print_tokens {v2}, replace 

{v12}, tcas {v13, v14, v36, v38}, tot_info {v6, v10, v19, 

v21} where the faulty statement is a non-executable 

statement. In addition, some of the faulty versions do not 

produce any failure output even though faulty statement 

existed in program code. As a results, we exclude 

print_tokens2 {v10}, replace {v32}, and schedule2 {v9}. 

We use GCC version 4.6.1 Gcov(GNU-GCC), running on 

Ubuntu 11.10 to gather the spectra from Siemens Test 

Suite. 

B. SBFL Metrics 

Software debugging researchers have proposed various 

number of SBFL metrics [3], [14]-[16] to produce the 

best ranking for fault statement. The aim is to save 

software developers’ time to locate the faulty statement in 

real life situation by inspecting as little statement as 

possible. Table II lists of existing SBFL metrics which 

are evaluated in this paper.  

TABLE I.  SIEMENS TEST SUITE SPECIFICATIONS. 

Program Faulty Versions LOC 
Number of Test 

Cases 
Description Versions excluded in experiments 

print_tokens 7 563 4130 Lexical analyser 1, 2, 4, 6 

print_tokens2 10 508 4115 Lexical analyser 10 

replace 32 563 5542 Pattern recognition 12, 21, 32 

schedule 9 410 2650 Priority scheduler 2, 7 

schedule2 10 307 2710 Priority scheduler 9 

tcas 41 173 1608 Altitude separation 10, 11 ,13, 14, 15, 31, 32, 33, 36, 38, 40 

tot_info 23 406 1052 Information measure 6, 10, 19, 21  
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TABLE II.  SBFL METRICS 

Name Formula Name Formula 

Naish1 
 

Zoltar 

 

Naish2 
 

Simple 

Matching  

Jaccard 
 

Sokal 
 

Anderberg 
 

Rogers & 

Tanimoto  

Sorensen-

Dice  
Russel & Rao 

 

Dice 
 

AMPLE 
 

qe 
 

Tarantula 
 

Wong1  CBI Inc. 
 

Hamming etc.  Ochiai 
 

M1 
 

M2 
 

Kulczynski1 
 

AMPLE2 
 

Binary 
 

Euclid  

Wong3 

 

Ochiai2 
 

Arithmetic 

Mean  

Geometric 

Mean 
 

Harmonic 

Mean  

Rogot2 
 

Cohen 
 

 

III. METHODOLOGY OF NEW SBFL METRIC 

The new SBFL metric is based on Pair Scoring, This 

technique works by assigning score to each statement 

based on the execution coverage of a pair of pass test case 

and fail test case. An example is shown in Fig. 2. 

Consider test case f and g for example. Scores are 

assigned to each statement based on whether or not the 

statement is executed by f and g. The highest score (2) is 

given to the statement which is executed by fail test case f 

but not executed by pass test case g because this coverage 

combination to suggest that the statement is of high risk 

and is likely to be faulty. The lowest score (0) is given to 

the statement which is executed only by pass test case g 

but not executed by fail test case f and also for the 

statement which is not executed by both f and g. An 

uncertain score (1) is given to statement which are 
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executed by both f and g. This pair scoring process is 

repeated for all possible paring combinations of pass test 

cases and fails test cases in the test suite. The sum of 

scores for each statement is then used to rank the 

statement for its likeliness to be faulty. The example in 

Fig. 2 shows the faulty statement is ranked in the fifth out 

of 25 based on the result of pair f and g. Based on this 

illustration of how Pair Scoring works for a pair of test 

case, we design a new SBFL metric which can be applied 

to a set of test cases by taking all possible combinations 

of pairing a past and a fail test cases based on the 

execution or non-execution of a statement and multiply it 

with the scores in Fig. 2.  

Executed Fail 0 1 0 1

Executed Pass 0 0 1 1

Score 0 2 0 1

Line of Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fail TC [f] - - 1 - - 1 1 1 1 - # # - - - # # - # # - - - 1 1

Pass TC [g] - - 1 - - 1 1 # # - # # - - - 1 # - 1 # - - - 1 1

Fail TC [f] 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Pass TC [g] 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1

|2| Score 0 0 1 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

|3| Rank 6 7 3 8 9 4 5 1 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

|1|

Rules

 

Figure 2.  Basic of Pair Scoring metrics. 

 

Figure 3.  Pair Scoring Equation. 

For each statement, the total combination for a pass 

test case that has not executed the statement and a fail test 

case that has not executed the statement is anp multiplied 

by anf (anp x anf) and this is multiplied with zero as such 

pair of test cases are assigned a score of zero. This forms 

the first term of Equation (2) in Fig. 3. Similarly, for the 

second term of Equation (2), there are (anp x aef) 

combinations for pairs of a pass test case that has not 

executed the statement with a fail test case that has 

executed the statement. This is multiplied with two as 

such pair of test cases is assigned a score for high risk of 

two as shown in Fig. 2. The complete formula for this 

new “pair scoring” SBFL metric is shown in equation (2) 

below. This equation can be further simplified to equation 

(3). 

IV. EXPERIMENT 

In order to evaluate the performance of the proposed 

pair scoring SBFL metric, experiments have been 

conducted to apply this new technique to locate faults in 

faulty versions of programs in Siemen Test Suite. As 

discussed in Section II, the percentage of code inspected 

(pci) before the faulty statement is successfully located is 

used to measure the performance of this SBFL metric. 

For each program in Siemen Test Suite, we averaged the 

pci results of all faulty versions for that program. The 

results of the experiments are shown in Table III for 

print_token, print_token2, replace and Table IV for 

schedule, schedule2, tcas and tot_info. The average pci 

for all seven programs in Siemen Test Suite are presented 

in Table IV. The same experiment is repeated on 31 other 

existing SBFL metrics for performance comparison. 

V. DISCUSSION 

Based on the results in Table III and Table IV, it can 

be observed that the proposed Pair Scoring approach 

outperformed majority of the 31 existing SBFL metrics. 

Overall, when the average performances over seven 

programs in Siemen Test Suites are taken into account, 

Pair Scoring outperformed 27 out of 31 (or 84.3%) of the 

existing SBFL metrics. Moreover, Pair Scoring is the best 

performing SBFL metric for two programs, namely, 

print_tokens and replace. 

VI. CONCLUSION 

In software development life cycle, software testing 

and debugging has been known as the most cost and time 

consuming activity. Spectrum-based Fault Localization 

(SBFL) technique has emerged as an effective solution to 

save the time and cost of the debugging process. SBFL 

metrics have been formulated to rank the statements in 

software code according to their likeliness to be the faulty 

statement. A good SBFL metric will rank faulty statement 

Although many SBFL metrics have been proposed, every 

SBFL metric is designed differently to rank the suspected 

statement. This makes every SBFL metric unique and has 

different capability in fault localization.  

In this paper, we proposed a new SBFL metric named, 

Pair Scoring. This technique works by comparing the 

execution paths of a pair of pass and fail test cases and 

assign score to each statement according to its likeliness 

to be the faulty statement. All possible combinations of 

pass and fail test cases are paired for scoring and the total 

score for each statement is used to rank the statement for 

its likeliness to be faulty. We evaluated the performance 

of the proposed metric on real life software artifacts and 

compare it with other existing SBFL metrics. Despite its 

simplicity, we found the proposed metric outperformed 

majority of the existing SBFL metrics. 

 

Original version: 

 (2) 

Simplified version: 

  (3) 
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TABLE III.  AVERAGE SBFL METRIC PERFORMANCE 

print_tokens 

 

print_tokens2 

 

replace 

 

schedule 

SBFL Metrics PCI 
 

SBFL Metrics PCI 
 

SBFL Metrics PCI 
 

SBFL Metrics PCI 

Ample 0.36 
 

Naish1 1.29 
 

Naish2 2.40 
 

M2 1.11 
M2 0.36 

 

Naish2 1.29 

 

Pair Scoring 2.40 

 

Naish1 1.11 

Naish1 0.36 

 

Zoltar 1.29 

 

Zoltar 2.43 

 

Naish2 1.11 

Naish2 0.36 
 

Wong3 1.37 
 

M2 2.43 
 

Zoltar 1.11 
Ochiai 0.36 

 

M2 2.80 

 

Ochiai 2.66 

 

Pair Scoring 1.21 

Pair Scoring 0.36 

 

Pair Scoring 3.01 

 

Geometric_Mean 2.92 

 

Ochiai 1.35 

Wong3 0.36 
 

Ochiai 4.68 
 

Naish1 2.98 
 

Anderberg 1.74 
Zoltar 0.36 

 

Arithmetic_Mean 6.62 

 

Arithmetic_Mean 2.99 

 

Dice 1.74 

Arithmetic_Mean 0.41 

 

Geometric_Mean 6.69 

 

Harmonic_Mean 3.10 

 

Jaccard 1.74 

Geometric_Mean 0.41 
 

Harmonic_Mean 7.12 
 

Rogot2 3.10 
 

Kulczynski1 1.74 
Ochiai2 0.41 

 

Rogot2 7.12 

 

Ochiai2 3.62 

 

qe 1.74 

Harmonic_Mean 1.01 
 

Ample 7.87 
 

Anderberg 3.89 
 

Sorensen-Dice 1.74 
Rogot2 1.01 

 

Anderberg 7.91 

 

Dice 3.89 

 

Tarantula 1.74 

Anderberg 1.48 

 

Dice 7.91 

 

Jaccard 3.89 

 

Arithmetic_Mean 8.04 

Dice 1.48 
 

Jaccard 7.91 
 

Kulczynski1 3.89 
 

Geometric_Mean 8.18 
Jaccard 1.48 

 

Sorensen-Dice 7.91 

 

Sorensen-Dice 3.89 

 

Harmonic_Mean 8.18 

Sorensen-Dice 1.48 

 

Ochiai2 7.97 

 

Cohen 4.08 

 

Rogot2 8.18 

Cohen 2.25 
 

CBI_Inc. 8.08 
 

CBI_Inc. 4.10 
 

CBI_Inc. 8.57 
CBI_Inc. 2.55 

 

Cohen 8.08 

 

qe 4.10 

 

Cohen 8.57 

qe 2.55 

 

qe 8.08 

 

Tarantula 4.10 

 

Euclid 9.54 

Tarantula 2.55 
 

Tarantula 8.08 
 

Ample 4.89 
 

Hamming_etc. 9.54 
Euclid 5.68 

 

AMPLE2 10.90 

 

Wong3 6.26 

 

M1 9.54 

Hamming_etc. 5.68 

 

Binary 10.90 

 

AMPLE2 6.44 

 

Rogers&Tanimoto 9.54 

Rogers&Tanimoto 5.68 
 

Russel & Rao 10.90 
 

Russel & Rao 6.44 
 

Simple_Matching 9.54 
Simple_Matching 5.68 

 

Wong1 10.90 

 

Wong1 6.44 

 

Sokal 9.54 

Sokal 5.68 

 

Euclid 11.70 

 

Binary 7.02 

 

AMPLE2 9.89 

AMPLE2 8.70 
 

Hamming_etc. 11.70 
 

Euclid 15.04 
 

Binary 9.89 
Binary 8.70 

 

Rogers&Tanimoto 11.70 

 

Hamming_etc. 15.04 

 

Russel & Rao 9.89 

Russel & Rao 8.70 

 

Simple_Matching 11.70 

 

M1 15.04 

 

Wong1 9.89 

Wong1 8.70 
 

Sokal 11.70 
 

Rogers&Tanimoto 15.04 
 

Ochiai2 12.41 
Kulczynski1 22.20 

 

Kulczynski1 24.30 

 

Simple_Matching 15.04 

 

Ample 17.68 

M1 26.94  M1 28.10  Sokal 15.04  Wong3 19.28 

TABLE IV.  AVERAGE SBFL METRIC PERFORMANCE 

schedule2 

 

tcas 

 

tot_info 

 

Average 

SBFL Metrics PCI 

 

SBFL Metrics PCI 

 

SBFL Metrics PCI 

 

SBFL Metrics PCI 

AMPLE2 15.73 

 

AMPLE2 7.50 

 

Naish1 2.99 1 Naish2 4.80 

Binary 15.73 
 

Binary 7.50 
 

Naish2 2.99 2 Zoltar 4.81 
Russel & Rao 15.73 

 

Russel & Rao 7.50 

 

Zoltar 3.02 3 Naish1 4.89 

Wong1 15.73 

 

Wong1 7.50 

 

M2 3.99 4 M2 5.62 

Naish1 17.35 
 

Naish1 8.11 
 

Pair Scoring 4.07 5 Pair Scoring 5.89 
Naish2 17.35 

 

Naish2 8.11 

 

Ochiai 5.07 6 Ochiai 6.23 

Zoltar 17.35 

 

Zoltar 8.11 

 

Geometric_Mean 5.70 7 Anderberg 7.73 

M2 20.03 
 

M2 8.63 
 

Arithmetic_Mean 5.78 8 Dice 7.73 
Ochiai 20.46 

 

Pair Scoring 8.71 

 

Harmonic_Mean 5.87 9 Jaccard 7.73 

Arithmetic_Mean 20.83 

 

Ochiai 9.06 

 

Rogot2 5.87 10 Sorensen-Dice 7.73 

Pair Scoring 21.48 
 

Harmonic_Mean 9.44 
 

Anderberg 6.13 11 Arithmetic_Mean 7.73 
Geometric_Mean 22.20 

 

Rogot2 9.44 

 

Dice 6.13 12 Geometric_Mean 7.96 

Harmonic_Mean 23.25 

 

Arithmetic_Mean 9.46 

 

Jaccard 6.13 13 Qe 8.05 

Rogot2 23.25 
 

Geometric_Mean 9.60 
 

Sorensen-Dice 6.13 14 Tarantula 8.05 
Anderberg 23.28 

 

Anderberg 9.66 

 

AMPLE2 6.33 15 Harmonic_Mean 8.28 

CBI_Inc. 23.28 

 

Dice 9.66 

 

Binary 6.33 16 Rogot2 8.28 

Cohen 23.28 
 

Jaccard 9.66 
 

Russel & Rao 6.33 17 Cohen 8.96 
Dice 23.28 

 

Kulczynski1 9.66 

 

Wong1 6.33 18 CBI_Inc. 9.03 

Jaccard 23.28 

 

Sorensen-Dice 9.66 

 

Cohen 6.77 19 AMPLE2 9.36 

Kulczynski1 23.28 
 

CBI_Inc. 9.69 
 

CBI_Inc. 6.92 20 Russel & Rao 9.36 
Qe 23.28 

 

Cohen 9.69 

 

qe 6.92 21 Wong1 9.36 

Sorensen-Dice 23.28 

 

qe 9.69 

 

Tarantula 6.92 22 Binary 9.44 

Tarantula 23.28 
 

Tarantula 9.69 
 

Ochiai2 9.23 23 Ochiai2 9.97 
Wong3 23.87 

 

Ochiai2 10.06 

 

Ample 9.90 24 Wong3 10.90 

Ochiai2 26.11 

 

Ample 11.37 

 

Wong3 10.49 25 Ample 11.42 

Ample 27.84 
 

Wong3 14.65 
 

Kulczynski1 12.87 26 Kulczynski1 13.99 
Euclid 28.96 

 

Euclid 16.48 

 

Euclid 17.15 27 Euclid 14.94 

Hamming_etc. 28.96 
 

Hamming_etc. 16.48 
 

Hamming_etc. 17.15 28 Hamming_etc. 14.94 
M1 28.96 

 

M1 16.48 

 

Rogers&Tanimoto 17.15 29 Rogers&Tanimoto 14.94 

Rogers&Tanimoto 28.96 

 

Rogers&Tanimoto 16.48 

 

Simple_Matching 17.15 30 Simple_Matching 14.94 

Simple_Matching 28.96 
 

Simple_Matching 16.48 
 

Sokal 17.15 31 Sokal 14.94 
Sokal 28.96 

 

Sokal 16.48 

 

M1 24.05 32 M1 21.30 
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