
Spectrum-based Fault Localization: A Pair

Scoring Approach

Patrick Daniel and Kwan Yong Sim
Faculty of Engineering, Computing and Science, Swinburne University of Technology Kuching, Sarawak, Malaysia

E-mail: pdaniel_koe@yahoo.com; ksim@swinburne.edu.my

Abstract—Spectrum-based Fault Localization (SBFL) is a

popular fault localization technique that ranks statements in

a program according to their suspiciousness to be faulty

based on the statement execution records (spectra) of pass

and fail test cases. Many SBFL metrics have been proposed

with varying accuracies in ranking of faulty statement. In

this paper we proposed a new SBFL metric based on a pair

scoring approach. We evaluated the performance of the

proposed metric and compare it with other existing SBFL

metrics. Despite its simplicity, we found the proposed metric

outperformed majority of the existing SBFL metrics. 

Index Terms—Software Engineering, Software Testing,

Debugging, Spectrum-based Fault Localization

I. INTRODUCTION

Software testing and debugging are the most expensive

but necessary activity in software development life cycle

for software quality assurance [1] and [2]. In the software

development process, faulty statement in software code

may lead the software failures such as crash or incorrect

outputs and results. The task to determine and find the

faulty statement is called fault localization. In a software

system with thousands of lines of code, it will be very

time consuming for the software developer to locate the

faulty statement. Researchers in software debugging have

designed effective ways to find the fault statement

through fault localization approaches.

One of the popular in software debugging approaches

is Spectrum-based Fault Localization (SBFL) [3]-[8]. In

SBFL, the statement execution record (spectra) of pass

and fail test cases are analyzed to assist software

developer to locate the faulty statement. SBFL metrics

have been formulated to rank the statements in software

code according to their likeliness to be the faulty

statement. In SBFL, statement with the highest score

calculated by the SBFL metric will be ranked first for

inspection as it is the most suspected statement that might

be the faulty statement. On the other hand, the statement

with the lowest score is the safest statement as it is most

unlikely to be the faulty statement. Through this ranking,

software developer can inspect the top ranking statement

first to locate the faulty statement rather than checking

Manuscript received June 25, 2013; revised August 23, 2013.

statement by statement from the beginning until the end

of the software code.

The performance of SBFL metric is measured by how

fast it leads software developer to the faulty statement.

This is determined by how high it ranks the faulty

statement based on the score calculated from the SBFL

metric. Every SBFL metric is designed differently to rank

the suspected statement. This makes every SBFL metric

unique and has different capability in fault localization.

In this paper we propose a new SBFL metric named

pair scoring. This technique works by comparing the

execution paths of a pair of pass and fail test cases and

assign score to each statement according to its likeliness

to be the faulty statement. All possible combinations of

pass and fail test cases are paired for scoring and the total

score for each statement is used to rank the statement for

its likeliness to be faulty. We evaluated the performance

of the proposed metric on real life software artifacts and

compare it with other existing SBFL metrics. Despite its

simplicity, we found the proposed metric outperformed

majority of the existing SBFL metrics.

The remaining of this paper is organized as follow:

Section II outlines the preliminaries of Spectra-based

Fault Localization (SBFL), the test objected used and the

existing SBFL metrics studied in this paper for

comparison with the proposed SBFL metric. The new

SBFL is presented in Section III. Section IV describes the

experiments conducted to evaluate the performance of the

proposed metric and compares it with other existing

SBFL metrics. Section V discusses the findings and

Section VI concludes the paper.

II. PRELIMINARIES

Program spectra refer to information about statement

executions by test cases. Four common coefficients are

computed as the spectrum for each statement. These

coefficients are aef, anf, aep, and anp. The first

coefficient, aef, represents the number of fail test cases

that have executed the statement, whereas the second

coefficient, anf, represents the number of fail test cases

that have not executed the statement. Similarly, the third

coefficient, aep, represents the number of pass test cases

that have executed the statement (as illustrated in Fig. 1),

whereas the last coefficient, anp, represents the number

of pass test cases that have not executed the statement.

Intuitively, a faulty statement will have high values for

aef and anp and low values for anf and aep.

185

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/jiii.1.4.185-190

Figure 1. Illustration of aef coefficient.

Based on coefficients aef, anf, aep, and anp, a SBFL

metric is used to compute a score for every statement to

rate its likeliness to be faulty. The statements are then

ranked from the highest score to the lowest score. To

locate the faulty statement, a software developer will

inspect the highest ranked statement first followed by the

lower ranked statements until the faulty statement is

located. Therefore, a good SBFL metric will rank faulty

statement high so that only few statements need to be

inspected before the faulty statement is successfully

located. Hence the performance of a SBFL metric is

commonly measured with the percentage of code

inspected (pci) before the faulty statement is successfully

located.

(1)

A. Testing Subject

The programs in Siemens Test Suite have been

selected as our subject programs to evaluate the

performance of the new SBFL metric. Programs in

Siemens Test Suite are commonly used to benchmark the

performance of SBFL metrics [9]-[12]. It is

downloadable from the Software Information Repository

[13]. Siemens Test Suite contains seven programs. Each

program has one original correct version and multiple

faulty versions of the program. The test case execution

scripts are included for each program. Table I shows the

specifications of programs in Siemens Test Suite which

include names of the programs, total faulty versions, total

lines of code, number of test cases, description of the

program, and list of the excluded versions.

In our experiment, all test cases will be executed for

each program. We exclude print_tokens {v4, v6} because

these versions are identical with the original correct

version of the program, where no faulty statement exists.

As we are focusing this study on single fault programs,

print_tokens {v1}, replace {v21}, schedule {v2, v7}, and

tcas {v10, v11, v15, v31, v32, v33, v40} are excluded

because the multiple faulty statements exist in these

versions. We also exclude print_tokens {v2}, replace

{v12}, tcas {v13, v14, v36, v38}, tot_info {v6, v10, v19,

v21} where the faulty statement is a non-executable

statement. In addition, some of the faulty versions do not

produce any failure output even though faulty statement

existed in program code. As a results, we exclude

print_tokens2 {v10}, replace {v32}, and schedule2 {v9}.

We use GCC version 4.6.1 Gcov(GNU-GCC), running on

Ubuntu 11.10 to gather the spectra from Siemens Test

Suite.

B. SBFL Metrics

Software debugging researchers have proposed various

number of SBFL metrics [3], [14]-[16] to produce the

best ranking for fault statement. The aim is to save

software developers’ time to locate the faulty statement in

real life situation by inspecting as little statement as

possible. Table II lists of existing SBFL metrics which

are evaluated in this paper.

TABLE I. SIEMENS TEST SUITE SPECIFICATIONS.

Program Faulty Versions LOC
Number of Test

Cases
Description Versions excluded in experiments

print_tokens 7 563 4130 Lexical analyser 1, 2, 4, 6

print_tokens2 10 508 4115 Lexical analyser 10

replace 32 563 5542 Pattern recognition 12, 21, 32

schedule 9 410 2650 Priority scheduler 2, 7

schedule2 10 307 2710 Priority scheduler 9

tcas 41 173 1608 Altitude separation 10, 11 ,13, 14, 15, 31, 32, 33, 36, 38, 40

tot_info 23 406 1052 Information measure 6, 10, 19, 21

186

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

TABLE II. SBFL METRICS

Name Formula Name Formula

Naish1

Zoltar

Naish2

Simple

Matching

Jaccard

Sokal

Anderberg

Rogers &

Tanimoto

Sorensen-

Dice
Russel & Rao

Dice

AMPLE

qe

Tarantula

Wong1 CBI Inc.

Hamming etc. Ochiai

M1

M2

Kulczynski1

AMPLE2

Binary

Euclid

Wong3

Ochiai2

Arithmetic

Mean

Geometric

Mean

Harmonic

Mean

Rogot2

Cohen

III. METHODOLOGY OF NEW SBFL METRIC

The new SBFL metric is based on Pair Scoring, This

technique works by assigning score to each statement

based on the execution coverage of a pair of pass test case

and fail test case. An example is shown in Fig. 2.

Consider test case f and g for example. Scores are

assigned to each statement based on whether or not the

statement is executed by f and g. The highest score (2) is

given to the statement which is executed by fail test case f

but not executed by pass test case g because this coverage

combination to suggest that the statement is of high risk

and is likely to be faulty. The lowest score (0) is given to

the statement which is executed only by pass test case g

but not executed by fail test case f and also for the

statement which is not executed by both f and g. An

uncertain score (1) is given to statement which are

187

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

executed by both f and g. This pair scoring process is

repeated for all possible paring combinations of pass test

cases and fails test cases in the test suite. The sum of

scores for each statement is then used to rank the

statement for its likeliness to be faulty. The example in

Fig. 2 shows the faulty statement is ranked in the fifth out

of 25 based on the result of pair f and g. Based on this

illustration of how Pair Scoring works for a pair of test

case, we design a new SBFL metric which can be applied

to a set of test cases by taking all possible combinations

of pairing a past and a fail test cases based on the

execution or non-execution of a statement and multiply it

with the scores in Fig. 2.

Executed Fail 0 1 0 1

Executed Pass 0 0 1 1

Score 0 2 0 1

Line of Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fail TC [f] - - 1 - - 1 1 1 1 - # # - - - # # - # # - - - 1 1

Pass TC [g] - - 1 - - 1 1 # # - # # - - - 1 # - 1 # - - - 1 1

Fail TC [f] 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Pass TC [g] 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1

|2| Score 0 0 1 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

|3| Rank 6 7 3 8 9 4 5 1 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

|1|

Rules

Figure 2. Basic of Pair Scoring metrics.

Figure 3. Pair Scoring Equation.

For each statement, the total combination for a pass

test case that has not executed the statement and a fail test

case that has not executed the statement is anp multiplied

by anf (anp x anf) and this is multiplied with zero as such

pair of test cases are assigned a score of zero. This forms

the first term of Equation (2) in Fig. 3. Similarly, for the

second term of Equation (2), there are (anp x aef)

combinations for pairs of a pass test case that has not

executed the statement with a fail test case that has

executed the statement. This is multiplied with two as

such pair of test cases is assigned a score for high risk of

two as shown in Fig. 2. The complete formula for this

new “pair scoring” SBFL metric is shown in equation (2)

below. This equation can be further simplified to equation

(3).

IV. EXPERIMENT

In order to evaluate the performance of the proposed

pair scoring SBFL metric, experiments have been

conducted to apply this new technique to locate faults in

faulty versions of programs in Siemen Test Suite. As

discussed in Section II, the percentage of code inspected

(pci) before the faulty statement is successfully located is

used to measure the performance of this SBFL metric.

For each program in Siemen Test Suite, we averaged the

pci results of all faulty versions for that program. The

results of the experiments are shown in Table III for

print_token, print_token2, replace and Table IV for

schedule, schedule2, tcas and tot_info. The average pci

for all seven programs in Siemen Test Suite are presented

in Table IV. The same experiment is repeated on 31 other

existing SBFL metrics for performance comparison.

V. DISCUSSION

Based on the results in Table III and Table IV, it can

be observed that the proposed Pair Scoring approach

outperformed majority of the 31 existing SBFL metrics.

Overall, when the average performances over seven

programs in Siemen Test Suites are taken into account,

Pair Scoring outperformed 27 out of 31 (or 84.3%) of the

existing SBFL metrics. Moreover, Pair Scoring is the best

performing SBFL metric for two programs, namely,

print_tokens and replace.

VI. CONCLUSION

In software development life cycle, software testing

and debugging has been known as the most cost and time

consuming activity. Spectrum-based Fault Localization

(SBFL) technique has emerged as an effective solution to

save the time and cost of the debugging process. SBFL

metrics have been formulated to rank the statements in

software code according to their likeliness to be the faulty

statement. A good SBFL metric will rank faulty statement

Although many SBFL metrics have been proposed, every

SBFL metric is designed differently to rank the suspected

statement. This makes every SBFL metric unique and has

different capability in fault localization.

In this paper, we proposed a new SBFL metric named,

Pair Scoring. This technique works by comparing the

execution paths of a pair of pass and fail test cases and

assign score to each statement according to its likeliness

to be the faulty statement. All possible combinations of

pass and fail test cases are paired for scoring and the total

score for each statement is used to rank the statement for

its likeliness to be faulty. We evaluated the performance

of the proposed metric on real life software artifacts and

compare it with other existing SBFL metrics. Despite its

simplicity, we found the proposed metric outperformed

majority of the existing SBFL metrics.

Original version:

 (2)

Simplified version:

 (3)

188

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

TABLE III. AVERAGE SBFL METRIC PERFORMANCE

print_tokens

print_tokens2

replace

schedule

SBFL Metrics PCI

SBFL Metrics PCI

SBFL Metrics PCI

SBFL Metrics PCI

Ample 0.36

Naish1 1.29

Naish2 2.40

M2 1.11
M2 0.36

Naish2 1.29

Pair Scoring 2.40

Naish1 1.11

Naish1 0.36

Zoltar 1.29

Zoltar 2.43

Naish2 1.11

Naish2 0.36

Wong3 1.37

M2 2.43

Zoltar 1.11
Ochiai 0.36

M2 2.80

Ochiai 2.66

Pair Scoring 1.21

Pair Scoring 0.36

Pair Scoring 3.01

Geometric_Mean 2.92

Ochiai 1.35

Wong3 0.36

Ochiai 4.68

Naish1 2.98

Anderberg 1.74
Zoltar 0.36

Arithmetic_Mean 6.62

Arithmetic_Mean 2.99

Dice 1.74

Arithmetic_Mean 0.41

Geometric_Mean 6.69

Harmonic_Mean 3.10

Jaccard 1.74

Geometric_Mean 0.41

Harmonic_Mean 7.12

Rogot2 3.10

Kulczynski1 1.74
Ochiai2 0.41

Rogot2 7.12

Ochiai2 3.62

qe 1.74

Harmonic_Mean 1.01

Ample 7.87

Anderberg 3.89

Sorensen-Dice 1.74
Rogot2 1.01

Anderberg 7.91

Dice 3.89

Tarantula 1.74

Anderberg 1.48

Dice 7.91

Jaccard 3.89

Arithmetic_Mean 8.04

Dice 1.48

Jaccard 7.91

Kulczynski1 3.89

Geometric_Mean 8.18
Jaccard 1.48

Sorensen-Dice 7.91

Sorensen-Dice 3.89

Harmonic_Mean 8.18

Sorensen-Dice 1.48

Ochiai2 7.97

Cohen 4.08

Rogot2 8.18

Cohen 2.25

CBI_Inc. 8.08

CBI_Inc. 4.10

CBI_Inc. 8.57
CBI_Inc. 2.55

Cohen 8.08

qe 4.10

Cohen 8.57

qe 2.55

qe 8.08

Tarantula 4.10

Euclid 9.54

Tarantula 2.55

Tarantula 8.08

Ample 4.89

Hamming_etc. 9.54
Euclid 5.68

AMPLE2 10.90

Wong3 6.26

M1 9.54

Hamming_etc. 5.68

Binary 10.90

AMPLE2 6.44

Rogers&Tanimoto 9.54

Rogers&Tanimoto 5.68

Russel & Rao 10.90

Russel & Rao 6.44

Simple_Matching 9.54
Simple_Matching 5.68

Wong1 10.90

Wong1 6.44

Sokal 9.54

Sokal 5.68

Euclid 11.70

Binary 7.02

AMPLE2 9.89

AMPLE2 8.70

Hamming_etc. 11.70

Euclid 15.04

Binary 9.89
Binary 8.70

Rogers&Tanimoto 11.70

Hamming_etc. 15.04

Russel & Rao 9.89

Russel & Rao 8.70

Simple_Matching 11.70

M1 15.04

Wong1 9.89

Wong1 8.70

Sokal 11.70

Rogers&Tanimoto 15.04

Ochiai2 12.41
Kulczynski1 22.20

Kulczynski1 24.30

Simple_Matching 15.04

Ample 17.68

M1 26.94 M1 28.10 Sokal 15.04 Wong3 19.28

TABLE IV. AVERAGE SBFL METRIC PERFORMANCE

schedule2

tcas

tot_info

Average

SBFL Metrics PCI

SBFL Metrics PCI

SBFL Metrics PCI

SBFL Metrics PCI

AMPLE2 15.73

AMPLE2 7.50

Naish1 2.99 1 Naish2 4.80

Binary 15.73

Binary 7.50

Naish2 2.99 2 Zoltar 4.81
Russel & Rao 15.73

Russel & Rao 7.50

Zoltar 3.02 3 Naish1 4.89

Wong1 15.73

Wong1 7.50

M2 3.99 4 M2 5.62

Naish1 17.35

Naish1 8.11

Pair Scoring 4.07 5 Pair Scoring 5.89
Naish2 17.35

Naish2 8.11

Ochiai 5.07 6 Ochiai 6.23

Zoltar 17.35

Zoltar 8.11

Geometric_Mean 5.70 7 Anderberg 7.73

M2 20.03

M2 8.63

Arithmetic_Mean 5.78 8 Dice 7.73
Ochiai 20.46

Pair Scoring 8.71

Harmonic_Mean 5.87 9 Jaccard 7.73

Arithmetic_Mean 20.83

Ochiai 9.06

Rogot2 5.87 10 Sorensen-Dice 7.73

Pair Scoring 21.48

Harmonic_Mean 9.44

Anderberg 6.13 11 Arithmetic_Mean 7.73
Geometric_Mean 22.20

Rogot2 9.44

Dice 6.13 12 Geometric_Mean 7.96

Harmonic_Mean 23.25

Arithmetic_Mean 9.46

Jaccard 6.13 13 Qe 8.05

Rogot2 23.25

Geometric_Mean 9.60

Sorensen-Dice 6.13 14 Tarantula 8.05
Anderberg 23.28

Anderberg 9.66

AMPLE2 6.33 15 Harmonic_Mean 8.28

CBI_Inc. 23.28

Dice 9.66

Binary 6.33 16 Rogot2 8.28

Cohen 23.28

Jaccard 9.66

Russel & Rao 6.33 17 Cohen 8.96
Dice 23.28

Kulczynski1 9.66

Wong1 6.33 18 CBI_Inc. 9.03

Jaccard 23.28

Sorensen-Dice 9.66

Cohen 6.77 19 AMPLE2 9.36

Kulczynski1 23.28

CBI_Inc. 9.69

CBI_Inc. 6.92 20 Russel & Rao 9.36
Qe 23.28

Cohen 9.69

qe 6.92 21 Wong1 9.36

Sorensen-Dice 23.28

qe 9.69

Tarantula 6.92 22 Binary 9.44

Tarantula 23.28

Tarantula 9.69

Ochiai2 9.23 23 Ochiai2 9.97
Wong3 23.87

Ochiai2 10.06

Ample 9.90 24 Wong3 10.90

Ochiai2 26.11

Ample 11.37

Wong3 10.49 25 Ample 11.42

Ample 27.84

Wong3 14.65

Kulczynski1 12.87 26 Kulczynski1 13.99
Euclid 28.96

Euclid 16.48

Euclid 17.15 27 Euclid 14.94

Hamming_etc. 28.96

Hamming_etc. 16.48

Hamming_etc. 17.15 28 Hamming_etc. 14.94
M1 28.96

M1 16.48

Rogers&Tanimoto 17.15 29 Rogers&Tanimoto 14.94

Rogers&Tanimoto 28.96

Rogers&Tanimoto 16.48

Simple_Matching 17.15 30 Simple_Matching 14.94

Simple_Matching 28.96

Simple_Matching 16.48

Sokal 17.15 31 Sokal 14.94
Sokal 28.96

Sokal 16.48

M1 24.05 32 M1 21.30

189

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

ACKNOWLEDGMENT

This work is supported via Malaysian Government

MOHE Fundamental Research Grant Scheme

(FRGS/2/2010/TK/SWIN/02/03).

REFERENCES

[1] B. Hailpern and P. Santhanam, “Software debugging, testing, and

verification,” IBM Systems Journal, 2002, vol. 40, no1.
[2] G. J. Myers, The Art of Software Testing, 2nd edn. John Wiley and

Sons, Revised and updated by T.Badgett and T. M. Thomas with

C. Sandler: Hoboken, 2004.
[3] H.J. Lee, L. Naish, and K. Ramamohanarao, “A model for spectra-

based software diagnosis,” ACM Transactions on Software

Engineering and Methodology, 2011, vol. 20, no. 3.

[4] X.Y. Xie, T. Y. Chen, and B. W. Xu, “Isolating suspiciousness

from spectrum-based fault localization techniques,” in Proc. 10th
International Conference on Quality Software, 2010, pp. 385–392.

[5] X. Y. Xie, W .E. Wong, T. Y. Chen, and B. W. Xu, “Spectrum-

Based fault localization: testing oracles are no longer mandatory,”
in Proc. 11th International Conference on Quality Software, 2011,

pp. 1–10.

[6] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the accuracy of
spectrum-based fault localization,” TAICPARTMUTATION, 2007,

pp. 89–98.

[7] H. J. Lee, L. Naish, and K. Ramamohanarao, “The effectiveness of
using non redundant test cases with program spectra for bug

localization,“ in Proc. 2nd IEEE international Conference,

Computer Science and Information Technology, 2009, pp. 127–
134.

[8] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evaluation of

similarity coefficients for software fault localization,” in Proc.
12th PRDC, 2006, pp. 39–46.

[9] C. Gong, Z. Zheng, W. Li, and P. Hao, “Effects of class imbalance

in test suites: An empirical etudy of spectrum-based fault
localization,” in Proc. IEEE 36th International Conference on

Computer Software and Applications Workshops, 2012, pp.470–

475.
[10] R. Abreu, A. Gonzalez, P. Zoeteweij, and A. Van Gemund,

“Automatic software fault localization using generic program

invariants,” in Proc. SAC, Brazil, 2008, pp. 712–717.

[11] A. Bandyopadhyay, “Improving spectrum-based fault localization
using proximity-based weighting of test cases,” in Proc. ASE,

USA, 2011, pp. 660–664.

[12] A. Bandyopadhyay, “Mitigating the effect of coincidental
correctness in spectrum based fault localization,” in Proc. IEEE 5th

International Conference on Software Testing, Verification and

Validation, 2012, pp. 479–482.
[13] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled

experimentation with testing techniques: An infrastructure and its

potential impact,” Empirical Software Engineering, 2005, vol. 10,
no. 4, pp. 405–435.

[14] R. Abreu, W. Mayer, M. Stumptner and A. Van Gemund,

“Refining spectrum-based fault localization rankings,” in Proc.
SAC, USA, 2009, pp.409–414.

[15] R. Abreu, A. Gonzalez, and A. Van Gemund, “Exploiting count

spectra for bayesian fault localization,” in Proc. PROMISE,
Romania, 2010, pp. 1–10.

[16] A. Bandyopadhyay and S. Ghosh, “Proximity based weighting of

test cases to improve spectrum based fault localization,” in Proc.
ASE, USA, 2011, pp. 420–423.

Patrick Daniel received his Bachelor of Science

(CSSE) from Swinburne University of

Technology in 2011. He is currently a Master of
Science candidate at Swinburne University of

Technology, Sarawak Campus, Malaysia. His

research interest is software testing and
debugging.

Kwan Yong Sim received his BEng (Hons)

from the National University of Malaysia in

1999 and Masters of Computer Science from
University of Malaya, Malaysia in 2001. He is

currently a Senior Lecturer at the Faculty of

Engineering, Computing and Science,
Swinburne University of Technology, Sarawak

Campus, Malaysia. His research interests are

software testing and analysis.

190

Journal of Industrial and Intelligent Information Vol. 1, No. 4, December 2013

©2013 Engineering and Technology Publishing

