
New Educational Approach to Direct Experience

through Embedded System Design and

Implementation

Kenji Ohmori, Xiao Fan, and Ryo Mizutani
Computer and Information Sciences, Hosei University, Tokyo 184-8584, Japan

Email: ohmori@hosei.ac.jp, {xiao.fan.6b, ryo.mizutani.5g}@stu.hosei.ac.jp

Abstract—Direct experience is necessary in the information

age, where virtual and indirect experiences are becoming

increasingly common. Designing and implementing

embedded systems give innovative, effective, and

importantly, direct experience to students of computer

science and information technology. Communicating

sequential processes (CSP), which are effectively

implemented by an event-driven and multi-thread processor,

have an advantage in understanding the design and

implementation of an embedded system because design

concepts are implemented in a natural way. We propose a

new educational approach, in which a formal development

method called incrementally modular abstraction hierarchy

(IMAH) is employed. As an example, a line-tracing car is

designed and implemented using IMAH.

Index Terms—embedded systems, communicating

sequential processes, event-driven and multi-thread

processor, incrementally modular abstraction hierarchy

I. INTRODUCTION

In the information age, indirect and virtual experiences

are useful, efficient, and economical educational tools.

The social networking service makes it possible for

people to communicate with one another over the Internet

without actual face-to-face encounters. Moreover,

Internet education allows teachers to teach their students

without ever meeting them in person. Hardware

experiments are often carried out by simulation without

handling physical components. Nevertheless, indirect and

virtual experiences are simulated; therefore, the need for

direct experience becomes invaluable.

In particular, students of computer science and

information technology have little chance to design and

implement real-world systems because economical and

user-friendly software simulators have been developed

extensively, thus, denying them the unique satisfaction of

implementing a real system while encountering new

challenges. Therefore, it is important to provide courses

that can provide students a direct experience of designing

and implementing a system by handling physical

components.

 Manuscript received June 24, 2013; revised August 22, 2013.

We propose a new educational approach for designing

and implementing embedded systems. An embedded

system includes software and hardware designs; inputs,

output, and control systems; combined implementation of

hardware and software components; soldering and

programming; testing and verification; and adjustment

and factoring.

A LEGO NXT robot [1], which provides an

environment of developing a robot using LEGO

components and a programmable computer, known as the

NXT Intelligent Brick, is a useful tool for teenagers. For

students of computer science and information engineering,

the LEGO robot is neither sophisticated nor instructive.

Although visual software blocks allow the students to

operate their robots, they are too simple for use in the

study of programming or controlling of embedded

systems. As the Intelligent Brick is equipped with a

conventional computer, the students can develop their

custom robots using C programming language. It is

difficult for them to understand how their programs work

within the whole system because the main environment is

controlled by the operating system. Their programs are

only part of the operating system, which hides the main

behavior of the system.

The embedded system is characterized by inputs,

outputs, and a controller. An input introduces an event

into the system. By receiving the event, the controller

computes its function and sends a response as an output.

It is important that event handling be implemented in a

natural way in a system. Interruption is used in the

conventional computer so that processes running on the

computer are performed sequentially. In the Intelligent

Brick, event handling works as a sequence of complicated

operations with interruptions, and is not implemented in a

natural way. It is not easy to understand, and causes

serious faults as it is sometimes used mistakenly.

Thus, instead of using the Intelligent Brick, we

propose to use an event-driven and multi-thread processor.

In this study, an XMOS processor [2] is used. The event-

driven and multi-thread processor allows a designer to

utilize threads, which are divided into three types in our

design. The first type receives inputs from input devices

such as sensors. The second type sends outputs from

output devices such as motors. The third type controls the

174

Journal of Industrial and Intelligent Information Vol. 1, No. 3, September 2013

©2013 Engineering and Technology Publishing
doi: 10.12720/jiii.1.3.174-178

system by receiving messages from a first type thread and

sending messages to a second type thread.

The threads in the system work in a concurrent and

distributed way where a thread sends messages to another

thread, which may, in turn, send messages to another

thread. This behavior is described in a natural way using

communicating sequential processes (CSP), which was

proposed by Prof. Hoare [3].

As the students are not familiar with the proposed

architecture using the event-driven and multi-thread

processor and communicating sequential processes, they

may encounter many challenges. To avoid unnecessary

challenges, they are recommended to use a formal

method when designing and implementing their systems.

The formal method used in this approach is called an

incrementally modular abstraction hierarchy (IMAH) [4-

8]. IMAH is characterized by abstraction hierarchy,

where the students proceed to design and implement their

systems by ascending or descending abstraction levels. At

a higher level, an abstract model is designed. At a lower

level, a concrete model is designed. The concrete model

inherits a property of the abstract model. By descending

the abstraction hierarchy, properties are incrementally

added to a new concrete model. As a result, students can

avoid the so-called combinatorial explosion, which

occurs as the students have to select an appropriate

combination among several choices.

In addition to the formal method, each student utilizes

agile software development, where the most important

part of the system is first designed and implemented.

Next, the second most important part is designed and

implemented, and combined with the first part. This

process is repeatedly continued until the whole system is

completed. Two parts are combined based on the

mathematical concepts of pushouts and pullbacks, which

also provide a formal way of designing a system.

II. DESIGN STEPS

A. Robot System Specification

At the first stage, students consider the kinds of robots

to design, and the possible behavior of the robots, such as

line-tracing cars, soccer-playing robots, room-clearer

robots, or helicopters. The first step is enjoyable,

innovative, and creative.

After the kinds of robots are decided, figures (i.e.,

mechanical, humanoid, or miniature) and equipment (i.e.,

sets of sensors and motors) of the robots are considered.

The students may draw designs of their robots, too.

The hardware system of a robot is composed of input

and output devices. The software system is composed of

agents. Each agent is implemented as a thread, and

provides a service for a device or the robot itself.

B. Assembling LEGO Blocks

The figures of the robots that the students determined

at the first stage are completed by assembling LEGO

blocks. When figures are original, this stage is performed

by trial and error.

The innumerable combination of LEGO blocks causes

combinatorial explosion, which should avoided when

designing a system. Therefore, when designing hardware

and software, IMAH, which is a formal method of

designing and implementing a system while avoiding

combinatorial explosion, is used. Nevertheless,

experiencing combinatorial explosion in assembling

LEGO blocks is a means for students to understand the

usefulness of the formal method at the later stage.

C. Hardware Design and Implementation

After an XMOS processor, an event-driven and multi-

thread processor, has been installed, the equipment

consisting of input and output devices is installed to the

robot. Most devices transmit digital signals using Inter-

Integrated Circuit (I
2
C), which is a multi-master serial

single-ended computer bus. I
2
C is composed of a pair of

serial clock line (SCL) and serial data line (SDA).

In our design, each device is controlled by a separated

agent. Two input-output lines are separately provided for

each device. Usually, I
2
C has the capability to

accommodate multiple masters and multiple slaves. In

our design, the function of I
2
C is limited to accommodate

only one master and one slave, which simplifies the

design of communication between the processor and the

device. The individual agent that receives inputs or sends

outputs becomes the master of its I
2
C, and the device that

sends its data (inputs) to the agent or receives its data

(outputs) from the agent becomes the slave. Therefore,

the number of pairs of SCL and SDA is equal to one of

the input and output devices. That is, two input-output

pins of the processor are provided physically to each

agent and connected to the corresponding pins of the

device.

Using I
2
C, an agent sends its device commands,

initiated by which the agent sends data to the device or

reads data from the device. As commands and data are

transmitted via an I
2
C digital interface, the students can

easily connect devices to their robots once they

understand the I
2
C principle.

Some devices are equipped with analog interfaces. In

such cases, these devices are connected through analog-to

digital converters, against which the students struggle if

they do not have enough knowledge about the analog

technology.

D. Software Design and Implementation

Each agent is completed by installing program codes.

An agent for an input device receives data from the input

device and sends a message to the control agent. An agent

for an output device receives a message from the control

agent and sends it to the output device. The control agent

receives a message from an input agent, performs its

function, and sends a response to an output device.

The software system is designed using IMAH. IMAH

is divided into two parts: abstract and concrete. In the

abstract part, the sequences of events and state transition

diagrams are designed. In the concrete part,

communicating sequential processes and programming

codes are implemented. We will describe it more

precisely in the following section:

175

Journal of Industrial and Intelligent Information Vol. 1, No. 3, September 2013

©2013 Engineering and Technology Publishing

E. Verification and Testing

In our development method, the verification of the

software system is carried out before testing. As

processes are described in the form of communicating

sequential processes, students can use verification tools

for CSP, such as PAT 3. Once the software system is

verified, the processes are translated into programming

codes, which run on the XMOS processor. Programming

language XC is provided to the XMOS processor. XC is

an extension of C, and enhances capabilities of message

communication and concurrent processes. By running the

verified software system, the hardware system is finally

verified.

III. DESIGN EXAMPLE

A. Line-tracing Car

We assume that a student wants to design and

implement a line-tracing car that runs on the black line

while avoiding barriers. When the car encounters a

barrier, it turns around and goes the opposite way. In

addition, the black line has branches, which the car may

take when it encounters them.

Furthermore, we assume that the car is equipped with

four devices: a line-sensor array that detects a line; an

ultra-sonic sensor that detects a barrier; and two motors

that rotate the right and left wheels.

Moreover, we assume the designed software system

provides five services: controlling the car; detecting the

black line; detecting barriers; rotating the left wheel; and

rotating the right wheel.

B. Applying the IMAH Method

After assembling LEGO blocks and designing and

implementing the hardware system, it is a stage for the

students to design and implement the software system.

The development of the software system is carried out

using agile software developmen.

The software system of the line-tracing car provides

five services. Among them, the service for controlling the

car is considered as the most important one. It is further

divided into three tasks: running the car; avoiding a

barrier; and selecting a path when encountering a branch.

Let us try to design the task of avoiding a barrier.

IMAH consists of the following seven abstraction

levels:

 The homotopy level: The most fundamental shape

of the structure of the developing system is

defined by including the number of connected

spaces and the fundamental group of each space.

Hardware components and software agents in the

developing system are treated as separate spaces.

 The set theoretical level: Each space is configured

as a set. The functions of a hardware component

or the services of a software agent become

elements of its set.

 The topological space level: A topology is induced

into each set. The set becomes a topological space,

which gives a strong mathematical foundation

when designing the system.

 The adjuncting space level: The static and

dynamical behavior of the developing system is

clarified so that relations among hardware

components and software agents (separated

spaces) are defined.

 The cellular space level: Realistic images of a

hardware component or a software agent are

clarified using CW complexes, in which hardware

components or software agents are configured as

n-dimensional entities. A CW complex represents

a state transition diagram in a sophisticated way.

 The presentation level: This level is the starting

point in traditional architecture and modeling.

CSP is defined for the software agents and

hardware components.

 The view level: Finally, program codes and logical

circuits are obtained.

IMAH is divided into two parts: abstract and concrete.

The abstract part includes five levels: ranging from the

homotopy level to the cellular space level. The concrete

part consists of the presentation level and the view level.

The abstract part generates common models in hardware

and software. In contrast, the concrete part creates

specific models of hardware and software.

Along with IMAH, the task of avoiding a barrier is

designed as follows:

At the homotopy level, it belongs to the fundamental

group 0 since it consists of only one entity.

At the set theoretical level, the following set is

obtained:

TB = {normal-state, barrier-state, on-black-line, off-

black-line, barrier, non-barrier, rotate-right-wheel,

inverse-rotate-right-wheel, rotate-left-wheel,

inverse-rotate-left-wheel}

Figure 1. The task of avoiding a barrier is a sequence of events, which

constitute a topological graph.

Figure 2. Sequence of events for the task of running the car.

In the above set, possible states and events are

included. At the next level, some of them are unnecessary

and further states and events may be added.

176

Journal of Industrial and Intelligent Information Vol. 1, No. 3, September 2013

©2013 Engineering and Technology Publishing

At the topological space level, the sequence of events

is determined, which constitutes a topological graph. The

task of avoiding a barrier is depicted in Fig. 1.

Similarly, the task of operating the car is obtained, as

shown in Fig. 2.

At the adjuncting space level, the two tasks are

attached together using an attaching function. Before

describing the attaching function, we explain a pushout

and a pullback, which are mathematical properties.

A pushout is defined as follows: Given two morphisms

f: A → X and g: A → Y, the pushout of the morphisms f

and g consists of an object P and two morphisms i1: X →

P and i2: Y → P such that i1 ◦ f = i2 ◦ g.

In the above definition, a morphism refers to a

structure preserving mapping from one space to another.

In set theory, a morphism is a function. In topology, it is a

continuous function.

A pullback is defined as follows: Suppose that there

are two morphisms f: X → Z and g: Y → Z. The pullback

of the morphisms f and g consists of an object P and two

morphisms p1: P → X and p2: P → Y such that f ◦ p1 = g

◦ p2.

Logical-and is an example of a pushout, and logical-or

is one of a pullback: the commutative diagram is depicted

in Fig. 3. As the pushout joins two spaces into one space,

it is utilized as a bottom-up approach, which assembles

components for a system. In contrast, a pullback is

utilized as a top-down approach.

Figure 3. Logical-or and logical-and are examples of a pushout and a
pullback, respectively

The attaching function is defined as follows: Suppose

X is a topological space, which is attached by another

topological space Y, then,

Yf = Y ⊔f X = Y ⊔ X / ~

is an attaching space obtained by attaching Y to X by an

attaching map f (or by identifying each point y ∈ Y0 | Y0 ⊆
Y with its image f (y) ∈ X by a continuous map f). ⊔
denotes a disjoint union. The attaching map f is a

continuous map such that f: Y0→X, where Y0 ⊆ Y. Thus,

the attaching space is a case of quotient spaces:

Y ⊔ X / ~ = Y ⊔f X = Y ⊔ X / (y ∼ f (y) | ∀y ∈ Y0).

Figure 4. The attaching function is a pushout.

The identification map g, in this case, is

g: Y ⊔ X → Y ⊔f X = Yf = Y ⊔ X / ~ =(Y ⊔ X − Y0) ⊔ Y0.

A commutative diagram of the attaching map is shown

in Fig. 4. As the attaching function is a pushout, it is

utilized as a bottom-up approach. In Fig. 4, the two

separated spaces that share parts of them are combined in

one space by attaching sharing spaces.

Using the attaching map, the two tasks are attached

together as shown in Fig. 5. The two tasks share the states

normal-state, which are combined into one space. At the

states normal-state, one task has a cyclic event no-barrier

and the other task does on-black-line; these events are

combined as an event no-barrier ∩ on-black-line.

Figure 5. Two tasks are attached together by the attaching function

After the task of selecting a path when encountering a

branch is added, a Meely machine, which is transformed

from the sequence of events, is obtained as shown in Fig.

6. The Meely machine, which is a state transition diagram,

belongs to the cellular space level. As the cellular space

has dimensions, the nodes and the links are represented as

0-dimensional and 1-dimensional entities.

Four other services are designed similarly. These

services are represented as independent state transition

diagrams.

At the cellular space level, each service is represented

by a Meely machine so that it is possible to implement

the service not only by means of hardware but also by

means of software. In case of hardware, each service

becomes an independent sequential logical circuit. As

services interact with each other, their sequential logical

circuits also communicate with each other. In case of

software, the services become processes (or threads),

which communicate with each other.

At the presentation level, processes are obtained from

the state transition diagrams. The following process C is

obtained for the service of controlling the car, whose state

transition diagram is shown in Figure 5:

C = (no-barrier ∩ on-black-line → C) [] (barrier →

inverse-rotate-left-wheel →…→C) [] (cross-black-line

→ stop-crossing -wheel →…→C) [] (in-black-line →

cross-black-line →…→C).

The service of detecting barriers is described by the

following process B. The ultrasonic sensor sends a

message indicating whether sound is reflected or not.

By receiving it, the sensor sends it to the service of

controlling the car.

177

Journal of Industrial and Intelligent Information Vol. 1, No. 3, September 2013

©2013 Engineering and Technology Publishing

B = (reflection → barrier → B) [] (no-reflection →

barrier →B).

Figure 6. The Meely machine, which is a state transition diagram, is
obtained at the cellular space level. It can be realized as a sequential

logical circuit or CSP

The other services are also obtained in a similar way.

The software system of the line-tracing car is

represented as concurrent processes:

SoftwareSystem = C || B ||…

At the view level, processes are transformed into

programming codes. The car in Fig. 7 is a line-tracing

car designed and implemented by one of our students.

A line-sensor array, an ultra-sonic sensor, a color

sensor, and two motors are installed on the car.

Figure 7. An implemented line-tracing car.

IV. CONCLUSION

A new approach to experiencing innovative study for

students of computer science and information technology

was proposed in this study. A line-tracing car was

designed and implemented using the formal method

IMAH: the car was designed by descending abstraction

hierarchy, that is, by adding new properties linearly. CSP

and XMOS made it possible to design and implement its

hardware and software easily since each service was

realized as an individual thread and an event was

performed as message passing.

Our master’s students designed and implemented their

original LEGO robots. In spite of being unfamiliar with

the setup, they thoroughly enjoyed their innovative

experiences by finding original solutions when solving

problems. In particular, they were thrilled to design and

operate their own cars.

REFERENCES

[1] NXT User Guide, LEGO Mindstorms education, 2006.
[2] D. May, The XMOS XS1 Architecture; Bristol: XMOS, 2009.

[3] C. A. R. Hoare, Communicating Sequential Processes. New
Jersey: Prentice Hall, 1985

[4] K. Ohmori and T. L Kunii, “Pi-Calculus modeling for cyberworlds

systems using the fibration and cofibration duality,” in Proc.
International Conference on Cyberworlds, 2008, pp. 363–370.

[5] K. Ohmori and T. L Kunii, “A formal methodology for developing
enterprise systems procedurally: Homotopy, pi-calculus and event-

driven programs,” in Proc. International Conference on

Cyberworlds, 2010, pp. 223–230.
[6] K. Ohmori and T. L. Kunii, “Visualization of joinery using

homotopy theory and attaching maps,” Transactions on
Computational Science XVI, Lecture Notes in Computer Science,

vol. 7380, pp. 95–114, 2012.

[7] K. Ohmori and T. L. Kunii, “Mathematical foundations for
designing 3-dimensional sketch book,” Transactions on

Computational Science XVI, Lecture Notes in Computer Science,
vol. 7848, pp.41–60, 2013.

[8] K. Ohmori, “Lego robot design using incrementally modular

abstraction hierarchy,” in Proc. Eighth IASTED International
Conference on Advances in Computer Science, 2013, pp. 407–419.

Kenji Ohmori was born at Anjo, Aichi, Japan
in 1945. He received a BS in Mathematical

Engineering and a PhD in Information
Engineering from the University of Tokyo in

1969 and 1984, respectively, and an MS in

EECS from the University of California,
Berkeley, in 1972. He is currently Professor of

the Faculty of Computer and Information
Sciences at Hosei University. He was the

founding dean of the Faculty of Computer and

Information Sciences from 2000 to 2004. Before joining Hosei
University in 1985 as a professor of the Engineering Faculty, he was

with the Central Research Laboratory of NEC, where he studied
architecture of multiprocessor systems and object oriented languages.

His current research area is a design method based on algebraic

topology.
Prof. Dr. Ohmori is members ACM, the Computer Society of IEEE,

IEICE and IPSJ. He received a Best Paper Award in 1985 from the
Information Processing Society of Japan.

Xiao Fan was born at Suzhou, JiangSu, China
in 1988. He received a BS in Electronic

Information Science and Technology from
University of Mining and Technology of China

and an MS in Computer Science from Hosei

University in Tokyo, Japan in 2013. He is
currently Master Student of University of

Science and Technology of China. He is now
persuing his graduate study on embedded

system design.

Ryo Mizutani was born at Ohta, Tokyo, Japan
in 1990. He received a BS in Computer Science

from Hosei University in 2011. He is currently

Master Student of Graduate School of
Computer and Information Sciences at Hosei

University. He studies design and

implementation of embedded systems based on

CSP, and complex (in particular, traffic) system

simulation using Netlogo.

178

Journal of Industrial and Intelligent Information Vol. 1, No. 3, September 2013

©2013 Engineering and Technology Publishing

