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Abstract—Direct experience is necessary in the information 

age, where virtual and indirect experiences are becoming 

increasingly common. Designing and implementing 

embedded systems give innovative, effective, and 

importantly, direct experience to students of computer 

science and information technology. Communicating 

sequential processes (CSP), which are effectively 

implemented by an event-driven and multi-thread processor, 

have an advantage in understanding the design and 

implementation of an embedded system because design 

concepts are implemented in a natural way. We propose a 

new educational approach, in which a formal development 

method called incrementally modular abstraction hierarchy 

(IMAH) is employed. As an example, a line-tracing car is 

designed and implemented using IMAH.  

 

Index Terms—embedded systems, communicating 

sequential processes, event-driven and multi-thread 

processor, incrementally modular abstraction hierarchy 

 

I. INTRODUCTION 

In the information age, indirect and virtual experiences 

are useful, efficient, and economical educational tools. 

The social networking service makes it possible for 

people to communicate with one another over the Internet 

without actual face-to-face encounters. Moreover, 

Internet education allows teachers to teach their students 

without ever meeting them in person. Hardware 

experiments are often carried out by simulation without 

handling physical components. Nevertheless, indirect and 

virtual experiences are simulated; therefore, the need for 

direct experience becomes invaluable. 

In particular, students of computer science and 

information technology have little chance to design and 

implement real-world systems because economical and 

user-friendly software simulators have been developed 

extensively, thus, denying them the unique satisfaction of 

implementing a real system while encountering new 

challenges. Therefore, it is important to provide courses 

that can provide students a direct experience of designing 

and implementing a system by handling physical 

components. 
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We propose a new educational approach for designing 

and implementing embedded systems. An embedded 

system includes software and hardware designs; inputs, 

output, and control systems; combined implementation of 

hardware and software components; soldering and 

programming; testing and verification; and adjustment 

and factoring. 

A LEGO NXT robot [1], which provides an 

environment of developing a robot using LEGO 

components and a programmable computer, known as the 

NXT Intelligent Brick, is a useful tool for teenagers. For 

students of computer science and information engineering, 

the LEGO robot is neither sophisticated nor instructive. 

Although visual software blocks allow the students to 

operate their robots, they are too simple for use in  the 

study of programming or controlling of embedded 

systems. As the Intelligent Brick is equipped with a 

conventional computer, the students can develop their 

custom robots using C programming language. It is 

difficult for them to understand how their programs work 

within the whole system because the main environment is 

controlled by the operating system. Their programs are 

only part of the operating system, which hides the main 

behavior of the system. 

The embedded system is characterized by inputs, 

outputs, and a controller. An input introduces an event 

into the system. By receiving the event, the controller 

computes its function and sends a response as an output. 

It is important that event handling be implemented in a 

natural way in a system. Interruption is used in the 

conventional computer so that processes running on the 

computer are performed sequentially. In the Intelligent 

Brick, event handling works as a sequence of complicated 

operations with interruptions, and is not implemented in a 

natural way. It is not easy to understand, and causes 

serious faults as it is sometimes used mistakenly. 

Thus, instead of using the Intelligent Brick, we 

propose to use an event-driven and multi-thread processor. 

In this study, an XMOS processor [2] is used. The event-

driven and multi-thread processor allows a designer to 

utilize threads, which are divided into three types in our 

design. The first type receives inputs from input devices 

such as sensors. The second type sends outputs from 

output devices such as motors. The third type controls the 
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system by receiving messages from a first type thread and 

sending messages to a second type thread.  

The threads in the system work in a concurrent and 

distributed way where a thread sends messages to another 

thread, which may, in turn, send messages to another 

thread. This behavior is described in a natural way using 

communicating sequential processes (CSP), which was 

proposed by Prof. Hoare [3]. 

As the students are not familiar with the proposed 

architecture using the event-driven and multi-thread 

processor and communicating sequential processes, they 

may encounter many challenges. To avoid unnecessary 

challenges, they are recommended to use a formal 

method when designing and implementing their systems. 

The formal method used in this approach is called an 

incrementally modular abstraction hierarchy (IMAH) [4-

8]. IMAH is characterized by abstraction hierarchy, 

where the students proceed to design and implement their 

systems by ascending or descending abstraction levels. At 

a higher level, an abstract model is designed. At a lower 

level, a concrete model is designed. The concrete model 

inherits a property of the abstract model. By descending 

the abstraction hierarchy, properties are incrementally 

added to a new concrete model. As a result, students can 

avoid the so-called combinatorial explosion, which 

occurs as the students have to select an appropriate 

combination among several choices. 

In addition to the formal method, each student utilizes 

agile software development, where the most important 

part of the system is first designed and implemented. 

Next, the second most important part is designed and 

implemented, and combined with the first part. This 

process is repeatedly continued until the whole system is 

completed. Two parts are combined based on the 

mathematical concepts of pushouts and pullbacks, which 

also provide a formal way of designing a system. 

II. DESIGN STEPS 

A. Robot System Specification 

At the first stage, students consider the kinds of robots 

to design, and the possible behavior of the robots, such as 

line-tracing cars, soccer-playing robots, room-clearer 

robots, or helicopters. The first step is enjoyable, 

innovative, and creative.  

After the kinds of robots are decided, figures (i.e., 

mechanical, humanoid, or miniature) and equipment (i.e., 

sets of sensors and motors) of the robots are considered. 

The students may draw designs of their robots, too.  

The hardware system of a robot is composed of input 

and output devices. The software system is composed of 

agents. Each agent is implemented as a thread, and 

provides a service for a device or the robot itself. 

B. Assembling LEGO Blocks 

The figures of the robots that the students determined 

at the first stage are completed by assembling LEGO 

blocks. When figures are original, this stage is performed 

by trial and error.  

The innumerable combination of LEGO blocks causes 

combinatorial explosion, which should avoided when 

designing a system. Therefore, when designing hardware 

and software, IMAH, which is a formal method of 

designing and implementing a system while avoiding 

combinatorial explosion, is used. Nevertheless, 

experiencing combinatorial explosion in assembling 

LEGO blocks is a means for students to understand the 

usefulness of the formal method at the later stage. 

C. Hardware Design and Implementation 

After an XMOS processor, an event-driven and multi-

thread processor, has been installed, the equipment 

consisting of input and output devices is installed to the 

robot. Most devices transmit digital signals using Inter-

Integrated Circuit (I
2
C), which is a multi-master serial 

single-ended computer bus. I
2
C is composed of a pair of 

serial clock line (SCL) and serial data line (SDA). 

In our design, each device is controlled by a separated 

agent. Two input-output lines are separately provided for 

each device. Usually, I
2
C has the capability to 

accommodate multiple masters and multiple slaves. In 

our design, the function of I
2
C is limited to accommodate 

only one master and one slave, which simplifies the 

design of communication between the processor and the 

device. The individual agent that receives inputs or sends 

outputs becomes the master of its I
2
C, and the device that 

sends its data (inputs) to the agent or receives its data 

(outputs) from the agent becomes the slave. Therefore, 

the number of pairs of SCL and SDA is equal to one of 

the input and output devices. That is, two input-output 

pins of the processor are provided physically to each 

agent and connected to the corresponding pins of the 

device. 

Using I
2
C, an agent sends its device commands, 

initiated by which the agent sends data to the device or 

reads data from the device. As commands and data are 

transmitted via an I
2
C digital interface, the students can 

easily connect devices to their robots once they 

understand the I
2
C principle. 

Some devices are equipped with analog interfaces. In 

such cases, these devices are connected through analog-to 

digital converters, against which the students struggle if 

they do not have enough knowledge about the analog 

technology. 

D. Software Design and Implementation 

Each agent is completed by installing program codes. 

An agent for an input device receives data from the input 

device and sends a message to the control agent. An agent 

for an output device receives a message from the control 

agent and sends it to the output device. The control agent 

receives a message from an input agent, performs its 

function, and sends a response to an output device. 

The software system is designed using IMAH. IMAH 

is divided into two parts: abstract and concrete. In the 

abstract part, the sequences of events and state transition 

diagrams are designed. In the concrete part, 

communicating sequential processes and programming 

codes are implemented. We will describe it more 

precisely in the following section: 
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E. Verification and Testing 

In our development method, the verification of the 

software system is carried out before testing. As 

processes are described in the form of communicating 

sequential processes, students can use verification tools 

for CSP, such as PAT 3. Once the software system is 

verified, the processes are translated into programming 

codes, which run on the XMOS processor. Programming 

language XC is provided to the XMOS processor. XC is 

an extension of C, and enhances capabilities of message 

communication and concurrent processes. By running the 

verified software system, the hardware system is finally 

verified.  

III. DESIGN EXAMPLE 

A. Line-tracing Car 

We assume that a student wants to design and 

implement a line-tracing car that runs on the black line 

while avoiding barriers. When the car encounters a 

barrier, it turns around and goes the opposite way. In 

addition, the black line has branches, which the car may 

take when it encounters them. 

Furthermore, we assume that the car is equipped with 

four devices: a line-sensor array that detects a line; an 

ultra-sonic sensor that detects a barrier; and two motors 

that rotate the right and left wheels.  

Moreover, we assume the designed software system 

provides five services: controlling the car; detecting the 

black line; detecting barriers; rotating the left wheel; and 

rotating the right wheel. 

B. Applying the IMAH Method 

After assembling LEGO blocks and designing and 

implementing the hardware system, it is a stage for the 

students to design and implement the software system. 

The development of the software system is carried out 

using agile software developmen.  

The software system of the line-tracing car provides 

five services. Among them, the service for controlling the 

car is considered as the most important one. It is further 

divided into three tasks: running the car; avoiding a 

barrier; and selecting a path when encountering a branch. 

Let us try to design the task of avoiding a barrier. 

IMAH consists of the following seven abstraction 

levels:  

 The homotopy level: The most fundamental shape 

of the structure of the developing system is 

defined by including the number of connected 

spaces and the fundamental group of each space. 

Hardware components and software agents in the 

developing system are treated as separate spaces. 

 The set theoretical level: Each space is configured 

as a set. The functions of a hardware component 

or the services of a software agent become 

elements of its set. 

 The topological space level: A topology is induced 

into each set. The set becomes a topological space, 

which gives a strong mathematical foundation 

when designing the system. 

 The adjuncting space level: The static and 

dynamical behavior of the developing system is 

clarified so that relations among hardware 

components and software agents (separated 

spaces) are defined. 

 The cellular space level: Realistic images of a 

hardware component or a software agent are 

clarified using CW complexes, in which hardware 

components or software agents are configured as 

n-dimensional entities. A CW complex represents 

a state transition diagram in a sophisticated way. 

 The presentation level: This level is the starting 

point in traditional architecture and modeling. 

CSP is defined for the software agents and 

hardware components. 

 The view level: Finally, program codes and logical 

circuits are obtained. 

IMAH is divided into two parts: abstract and concrete. 

The abstract part includes five levels: ranging from the 

homotopy level to the cellular space level. The concrete 

part consists of the presentation level and the view level. 

The abstract part generates common models in hardware 

and software. In contrast, the concrete part creates 

specific models of hardware and software. 

Along with IMAH, the task of avoiding a barrier is 

designed as follows:  

At the homotopy level, it belongs to the fundamental 

group 0 since it consists of only one entity.  

At the set theoretical level, the following set is 

obtained:  

 

TB = {normal-state, barrier-state, on-black-line, off-

black-line, barrier, non-barrier, rotate-right-wheel, 

inverse-rotate-right-wheel, rotate-left-wheel, 

inverse-rotate-left-wheel} 

 

 

Figure 1.  The task of avoiding a barrier is a sequence of events, which 

constitute a topological graph. 

 

Figure 2.  Sequence of events for the task of running the car. 

In the above set, possible states and events are 

included. At the next level, some of them are unnecessary 

and further states and events may be added. 
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At the topological space level, the sequence of events 

is determined, which constitutes a topological graph. The 

task of avoiding a barrier is depicted in Fig. 1. 

Similarly, the task of operating the car is obtained, as 

shown in Fig. 2. 

At the adjuncting space level, the two tasks are 

attached together using an attaching function. Before 

describing the attaching function, we explain a pushout 

and a pullback, which are mathematical properties. 

A pushout is defined as follows: Given two morphisms 

f: A → X and g: A → Y, the pushout of the morphisms f  

and g consists of an object P and two morphisms i1: X → 

P and i2: Y → P such that i1 ◦ f = i2 ◦ g.   

In the above definition, a morphism refers to a 

structure preserving mapping from one space to another. 

In set theory, a morphism is a function. In topology, it is a 

continuous function. 

A pullback is defined as follows: Suppose that there 

are two morphisms f: X → Z and g: Y → Z. The pullback 

of the morphisms f and g consists of an object P and two 

morphisms p1: P → X and p2: P → Y such that f ◦ p1 = g 

◦ p2. 

Logical-and is an example of a pushout, and logical-or 

is one of a pullback: the commutative diagram is depicted 

in Fig. 3. As the pushout joins two spaces into one space, 

it is utilized as a bottom-up approach, which assembles 

components for a system. In contrast, a pullback is 

utilized as a top-down approach. 

 

Figure 3.  Logical-or and logical-and are examples of a pushout and a 
pullback, respectively 

The attaching function is defined as follows: Suppose 

X is a topological space, which is attached by another 

topological space Y, then,  

Yf = Y ⊔f X = Y ⊔ X / ~ 

is an attaching space obtained by attaching Y to X by an 

attaching map f (or by identifying each point y ∈ Y0 | Y0 ⊆ 
Y with its image f (y) ∈ X by a continuous map f). ⊔ 
denotes a disjoint union. The attaching map f is a 

continuous map such that f: Y0→X, where Y0 ⊆ Y. Thus, 

the attaching space is a case of quotient spaces: 

Y ⊔ X / ~ = Y ⊔f X = Y ⊔ X / (y ∼  f (y) | ∀y ∈ Y0). 

 

Figure 4.  The attaching function is a pushout. 

The identification map g, in this case, is 

g: Y ⊔ X → Y ⊔f X = Yf = Y ⊔ X / ~ =(Y ⊔ X − Y0) ⊔ Y0. 

A commutative diagram of the attaching map is shown 

in Fig. 4. As the attaching function is a pushout, it is 

utilized as a bottom-up approach. In Fig. 4, the two 

separated spaces that share parts of them are combined in 

one space by attaching sharing spaces. 

Using the attaching map, the two tasks are attached 

together as shown in Fig. 5. The two tasks share the states 

normal-state, which are combined into one space. At the 

states normal-state, one task has a cyclic event no-barrier 

and the other task does on-black-line; these events are 

combined as an event no-barrier ∩ on-black-line. 

 

Figure 5.  Two tasks are attached together by the attaching function 

After the task of selecting a path when encountering a 

branch is added, a Meely machine, which is transformed 

from the sequence of events, is obtained as shown in Fig. 

6. The Meely machine, which is a state transition diagram, 

belongs to the cellular space level. As the cellular space 

has dimensions, the nodes and the links are represented as 

0-dimensional and 1-dimensional entities.  

Four other services are designed similarly. These 

services are represented as independent state transition 

diagrams. 

At the cellular space level, each service is represented 

by a Meely machine so that it is possible to implement 

the service not only by means of hardware but also by 

means of software. In case of hardware, each service 

becomes an independent sequential logical circuit. As 

services interact with each other, their sequential logical 

circuits also communicate with each other. In case of 

software, the services become processes (or threads), 

which communicate with each other. 

At the presentation level, processes are obtained from 

the state transition diagrams. The following process C is 

obtained for the service of controlling the car, whose state 

transition diagram is shown in Figure 5:  

C = (no-barrier ∩ on-black-line → C) [] (barrier → 

inverse-rotate-left-wheel →…→C) [] (cross-black-line 

→ stop-crossing -wheel →…→C) [] (in-black-line → 

cross-black-line →…→C). 

The service of detecting barriers is described by the 

following process B. The ultrasonic sensor sends a 

message indicating whether sound is reflected or not. 

By receiving it, the sensor sends it to the service of 

controlling the car. 
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B = (reflection → barrier → B) [] (no-reflection → 

barrier →B). 

 

Figure 6.  The Meely machine, which is a state transition diagram, is 
obtained at the cellular space level. It can be realized as a sequential 

logical circuit or CSP 

The other services are also obtained in a similar way. 

The software system of the line-tracing car is 

represented as concurrent processes: 

SoftwareSystem = C || B ||… 

At the view level, processes are transformed into 

programming codes. The car in Fig. 7 is a line-tracing 

car designed and implemented by one of our students. 

A line-sensor array, an ultra-sonic sensor, a color 

sensor, and two motors are installed on the car. 

 

Figure 7.  An implemented line-tracing car. 

IV. CONCLUSION 

A new approach to experiencing innovative study for 

students of computer science and information technology 

was proposed in this study. A line-tracing car was 

designed and implemented using the formal method 

IMAH: the car was designed by descending abstraction 

hierarchy, that is, by adding new properties linearly. CSP 

and XMOS made it possible to design and implement its 

hardware and software easily since each service was 

realized as an individual thread and an event was 

performed as message passing. 

Our master’s students designed and implemented their 

original LEGO robots. In spite of being unfamiliar with 

the setup, they thoroughly enjoyed their innovative 

experiences by finding original solutions when solving 

problems. In particular, they were thrilled to design and 

operate their own cars. 
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