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Abstract—A propeller blade, as a typical example of low-

rigidity components, is prone to chatter and deformation in 

machining process, especially when large material removal 

is applied. In order to foresee the problems and then 

optimize the process, identification of the dynamic behavior 

of the workpiece is of great importance. This paper studies 

the dynamic characteristics of the workpiece in the 

machining process from plate to propeller blade using Finite 

Element Method. The results show that the time-varying 

natural frequencies of the workpiece decrease gradually at 

the beginning steps of the process due to the influence of 

material removal, and increases afterwards influenced by 

the geometry of the blade. 
 

Index Terms—surface machining, propeller blade, whirling, 

dynamic characteristics 

 

I. INTRODUCTION 

Propellers are a type of mechanical fans that convert 

rotational motion into thrust. To this end, a propeller 

employs a number of aerofoil-shaped blades that are 

geometrically constructed out of functional free-form 

surfaces. The curved and slender shape of the blades 

plays a prominent role in their propulsive performance. 

Nevertheless, it also endows the blades with typical 

characteristics of thin-walled components. 

Blade machining is recognized as an intractable task 

due to the low-rigidity and geometrical complexity of the 

workpiece. The related literature shows intensive research 

has been conducted with respect to blade modeling and 

tool path generation [1]-[3]. Usually blade components 

are shaped by 5-axis milling process using end mills. This 

is quite an established approach with acceptable precision 

and surface finish, although it is not wholly satisfactory 

because the machine tools are usually quite expensive 

and the tool path algorithms are very complicated. In 

recent years, researchers also worked on alternative ways 

for machining blades or blade-like components, for 
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example, ref. [4] proposed to use circular disk mill cutters, 

and [5] and [6] examined the feasibility of blade whirling. 

While these approaches prove more cost-effective, the 

larger material removal rate in the process makes the 

product quality more liable to deformation and vibration 

due to the low-rigidity of the workpiece and the dynamic 

characteristics of the process. 

Accurate dynamics characterization is the precondition 

for prediction of the machining process [7]. In recent 

years, time-varying dynamic characteristics 

corresponding to material removal during the machining 

process have gained much attention. Previous work 

pointed out that the influence of the material removal on 

the dynamic characteristics of the workpiece was not 

negligible [8], [9] and the dynamic characteristics in 

different stages of machining would affect chatter 

stability especially in thin-walled workpiece machining 

[9], [10]. 

Generally, impact hammer test and shaker test are the 

most common methods for identifying dynamic 

parameters [11]. Kuljanic [12] compared four types of 

sensors (rotating dynamometer, accelerometers, acoustic 

emission and electrical power sensors) and picked out the 

optimal muti-sensor system for chatter singles. Iglesias [7] 

provided a method called SMFE(sweep milling force 

excitation) procedure that allowed obtaining the FRF 

(frequency response function) by using the actual 

machining force under real cutting condition. And ref. 

[13] presented a methodology for prediction of time-

varying dynamics by using the FRF only once. 

However, it is not straightforward in some cases to 

conduct an impact hammer test and capture the dynamic 

responses of the in-process workpiece, because the 

workpiece and cutting tools are usually in complex multi-

axis moving or rotating condition. Numerical methods are 

effective alternatives in view of the difficulty of the 

application of online measurement during the real 

machining situation. Bartosz [14] established a way for 

precise determination of the varying FRF by utilizing 
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modal analysis based on workpiece acceleration 

measurement during machining. Kersting [15] evaluated 

the time- and position-dependent dynamics in five-axis 

NC milling process of thin-walled component. Biermann 

[16] presented a simulation system considering the 

geometry and regenerative workpiece vibrations during 

the five-axis milling process. Budak [9] used the cutter 

location(CL) files to determine the removed elements at 

each tool location and predicted the in-process blade 

workpiece dynamics based on a structural dynamic 

modification scheme by using FEM model of the initial 

workpiece. 

This paper aims to identify the dynamic characteristics 

of the propeller blade workpiece subjected to large 

material removal through numerical simulation. In order 

to estimate the dynamics of the in-process propeller blade 

workpiece considering the material removal effect and 

the blade geometric character, the machining process is 

divided into several steps, each corresponding to a strip 

of the workpiece. 

II. MODAL ANALYSIS OF PROPELLER BLADE 

WORKPIECE IN PROCESS  

A propeller blade can be produced through machining 

out of a piece of raw material. Usually a cuboid-shaped 

piece of material which is similar to the blade component 

in size is used as the raw workpiece and the milling is 

carried out along the tool path pre-defined as shown in 

Fig. 1. For a certain position on the blade, the overall 

vibration could be simplified to linear superposition of 

oscillations corresponding to the harmonic components of 

excitation. 

 

Figure 1.  Blade machine schematic 

 

Figure 2.  CAD model of propeller blade 

Blades are defined by a series of cross-section profiles 

and several radial locations [17], [18]. In this paper, a 

propeller blade approximately 150mm long is chosen as 

the object of analysis. It is modeled based on 9 section 

profiles, which are each described by 34 data points. The 

established objective blade model is illustrated in Fig. 2. 

To obtain the natural frequencies of the blade 

workpiece corresponding to the material removal during 

the machining process, the workpiece is divided into 

strips considering the geometric feature and simulation is 

carried out respectively. 

A rectangular plate with geometric dimensions 

200mm×108mm×20mm is selected as the original 

workpiece, with a cylinder on one end and a center hole 

on the other for the sake of clamping. Huge amount of 

material needs to be removed during the machining 

process due to the obvious difference in volume between 

the rectangular plate and the desired blade geometry. 

To identify the dynamic characteristics of the 

workpiece during the material removal process, 

numerical analysis is conducted. The portion of the 

original workpiece to be machined is divided into 15 

strips arranged in order of material removal. Each strip is 

10mm wide and further separated into 6 chunks as shown 

in Fig. 3. In this way the workpiece is marked off into 90 

zones to be machined. 

 

Figure 3.  Discretization of the original workpiece 

A commercial software package is used to construct 

the 3D model of the workpiece. The instantaneous 

geometry of the workpiece at each strip is modeled based 

on Boolean operations. 

These geometrical models are then imported into a 

finite element analysis software package. For 

convenience we suppose that the workpiece is made of 

general material Cooper Alloy with its density, Young`s 

modulus and Poisson`s ratio being constantly 8300kg/m
3
, 

11GPa and 0.34 respectively, regardless of the stages of 

material removal.  

The boundary conditions of the workpiece are as 

follows: two fixed constraints are exerted to the cylinder 

and center hole at each end of the workpiece mentioned 

above to mock up the clamping conditions. Solid partition 

type 10 nodes tetrahedral units (solid187) was selected 

for the model grid partitioning. The meshing size is set to 

default by the software. The amount of mesh varies with 

each individual, for example, there are about 1833 

elements and 3643 nodes in the model of step15. 

Modal analysis is then implemented in the above-

mentioned environment by importing the 90 models built 
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corresponding to the machined chunks of the workpiece. 

The data of results is managed in MATLAB and 

illustrated in Fig. 4, Fig. 5, and Fig. 6. Fig. 4 displays the 

general distribution of the first order frequency of the 

workpiece that varies with the workpiece being machined 

chunk after chunk. Further, cubic fitting of these data is 

shown in the Fig. 5, in which we can see that the natural 

frequencies descend gradually with the material removal 

process at the beginning steps, however, as the material 

removal continues, a peak appears. Furthermore, through 

the natural frequencies distribution contour map 

illustrated in Fig. 6, it can be drawn that the variation of 

natural frequencies corresponding to the chunks with 

material removed of every strip is slight at the second 

half of machining strips but drastic changes at the first 

half stage. 

 

Figure 4.  Natural frequencies with chunks removed 

 

Figure 5.  Fitted surface for the first frequencies  

 

Figure 6.  Contour map of 1st frequency 

III. HARMONIC RESPONSE ANALYSIS 

Based on the modal analysis, harmonic response 

analysis is implemented to establish the Frequency 

Response Function (FRF) for every machining step 

corresponding to each strip’s material removal. For the 

response, the acceleration signal is selected as the object 

of analysis. A harmonic force perpendicular to the 

workpiece plane is applied at the end point on the blade 

body with the current strip finished. The frequency of the 

force is set to increase from 500Hz to 2000Hz with a 

0.5Hz increment in estimation of the FRF, with the 

material damping ratio not being taken into account. As 

shown in Fig. 7, the peaks of the FRFs are zoned on the 

position-frequency plane which is consistent with the 

natural frequency results illustrated in Fig. 8. It shows 

that the natural frequencies in the second half of the 

machining process are affected more significantly by the 

removed material of the machined strips. It can be 

summarized that in machining the first half especially the 

middle of the workpiece, the material removal of each 

chunk along a strip produces a large impact on the 

variation of natural frequencies in width direction. 

However, at the second half the natural frequencies vary 

mainly with the removed strips. 

 

Figure 7.  The FRFs of material removal strips 

It`s worth noting that the acceleration signal peak 

values (Fig. 7) and the natural frequencies (Fig. 8) 

intensify sharply from step 8 to step 12 where the width 

and the curvature of the blade workpiece enter the stage 

of rapidly increase. The analysis result shows that the 

modal shape changes a lot as illustrated in Fig. 9. It is 

generally perceived that the first order natural frequency 

of a thin rectangular plate varies monotonously with the 

material removal in peripheral milling according to ref 

[10]. In this case, however, the natural frequency 

decreases firstly due to the material removal and an 

increasing trend follows from step8 to step12, which is 

similar to the results presented in ref [9], of which the 

object model is a turbine blade. The results imply that the 

particular geometry of the blade, in combination with 

material removal, may have an influence on its in-process 

dynamics.  

 

Figure 8.  The change rule of 1st order natural frequencies 
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Figure 9.  Modal shapes of step8 and step12 

IV. CONCLUSION 

This paper studied the effects of material removal on 

the dynamics of in-process workpiece of a propeller blade 

by using FEM. The FRFs of the workpiece with respect 

to progression of the machining process were evaluated. 

The results show the natural frequencies decrease 

gradually at the beginning steps of the process due to the 

influence of material removal, but increases afterwards, 

which implies that the dynamics are influenced not only 

by the material removal but also by the geometry of the 

blade. The results also suggest that natural frequency 

ranges need to be observed to guarantee the stability of 

the machining process. In this case for example, 885Hz-

975Hz is the dangerous frequency range during the first 

half of machining process while 735Hz-1100Hz is the 

resonance minefield for the second half. 
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