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Abstract—This study presents a Bayesian regression method 

for estimating the dynamic dependence of the stationary 

component of Gross Domestic Product (GDP) on that of 

capacity utilization. First, stationary components from 

original GDP and capacity utilization time series are 

extracted using a set of state space models. Then, a set of 

Bayesian regression models with a time-varying coefficient is 

constructed. As an application of our proposed method, we 

analyze the dynamic relationship between GDP and capacity 

utilization using Japanese economy data from 1980 to 2005. 

The results imply that capacity utilization has had a larger 

influence on GDP in the expansion phase than in the 

recession phase of the Japanese business cycle since the 1990s. 
 

Index Terms—Bayesian modeling, dynamic relationship 

analysis, time-varying coefficient, gross domestic product, 

capacity utilization rate, Japanese economy. 

 

I. INTRODUCTION 

Macroeconomic performance is closely related to 

manufacturing capacity utilization. Therefore, from the 

perspective of macroeconomic policies, considering the 

mechanism by which capacity utilization has an influence 

on economic fluctuations is an important issue. The 

objective of this study is to understand the dynamic 

relationship between capacity utilization and real Gross 

Domestic Product (GDP).  

Many empirical studies exist regarding the relationship 

between capacity utilization and macroeconomic 

performance. For example, [1] examined the determinants 

of capacity utilization in 40 chemical product industries. 

As a result, they found that capacity utilization was 

positively related to capital intensity and the rate of 

demand growth. [2] attempted to identify the channels 

through which economic reforms enhanced productivity 

growth in the total manufacturing sector in India. Because 

one possible channel is better utilization of plant capacity, 

they estimated the capacity utilization rate in Indian 

manufacturing, and showed that there was evidence of a 
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favorable impact of economic reforms on productivity 

growth in total manufacturing beyond the positive impact 

of improved capacity utilization. [1] investigated the 

relationship between inflation and capacity utilization in 

the US. An interesting finding is that in the long run, a 

one-percent increase in the rate of inflation leads to 

approximately a 0.0046-percent increase in capacity 

utilization.  

However, existing empirical studies do not tackle some 

important questions. For example, regarding the lead-lag 

relationship between capacity utilization and GDP, is there 

a difference between expansion and recession periods of 

business cycles? What kinds of things can be learned about 

the effect of capacity utilization on GDP during expansion 

and recession periods? How does the effect of capacity 

utilization on GDP change over time?  

In particular, understanding the time-varying effect of 

capacity utilization on GDP is crucial for the following 

reason. Regression analysis models are often used for 

relationship analysis with constant regression coefficients, 

the implication being that no structural changes occur. 

However, when the study period spans several decades, it 

is clearly unrealistic to assume constant coefficient 

parameters. Thus, conventional approaches are considered 

inadequate for the analysis of business cycles with 

long-term time series. [3] developed a Bayesian approach 

based on vector autoregressive models with time-varying 

coefficients for analyzing time series that are 

nonstationary in covariance. [4] introduced a Bayesian 

time-varying regression model for dynamic relationship 

analysis. [5] More recently, these approaches have been 

used by [6], [7], and [8]. To manage the above difficulties, 

in this study, we propose an approach to analyzing the 

relationship between a quarterly economic indicator and a 

monthly economic indicator, and then apply the proposed 

approach to analyzing the relationship between capacity 

utilization and GDP in Japan from 1980 to 2005.  

In this study, as the first step in analyzing the dynamic 

relationship between capacity utilization and GDP, we 

extract the stationary components from each original time 

series. Then, we present a method to analyze the dynamic 
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relationship between the stationary components of 

capacity utilization and GDP using Bayesian dynamic 

modeling. There are two aspects to the relationship 

between capacity utilization and GDP, i.e., the lead-lag 

relationship and the time-varying dependence between 

these two indicators. These are considered by introducing 

a lag parameter and time-varying coefficients into a set of 

Bayesian dynamic models. In our recent studies, we 

analyzed the dynamic dependence of GDP on the 

unemployment rate, and examined the dynamic 

relationship between economic growth and inflation in 

Japan using a similar method (see, [9] and [10]).  

Main results obtained from an empirical study are as 

follows. In both the expansion and recession phases of the 

Japanese business cycle, a movement in capacity 

utilization has preceded a movement in GDP by several 

months. Capacity utilization had a larger influence on 

GDP in the recession phase than in the expansion phase 

during the 1980s. However, the reverse has been the case 

since the 1990s. That is, capacity utilization has had a 

larger influence on GDP in the expansion phase than in the 

recession phase since the 1990s.  

The rest of this paper is organized as follows. In Section 

II, we introduce a method for estimating a stationary 

component from quarterly or monthly time series data. In 

Section III, we present our models and parameter 

estimation methods for the proposed approach.  

An empirical study based on the proposed approach is 

presented in Section IV. Some conclusions are 

presented in Section V. 

II. STATIONARY COMPONENT ESTIMATION 

As mentioned above, the first step in analyzing the 

relationship between GDP and capacity utilization is the 

estimation of the stationary components of GDP and 

capacity utilization. Thus, we introduce a method for 

estimating the stationary components from the original 

time series of these indicators.  

For quarterly GDP time series 𝑦𝑚, we consider a set of 

statistical models as follows:  

𝑦𝑚 = 𝑡𝑚
𝑦

+ 𝑠𝑚
𝑦

+ 𝑟𝑚
𝑦

+ 𝑤𝑚
𝑦
,                              (1) 

𝑡𝑚
𝑦

= 2𝑡𝑚−1
𝑦

− 𝑡𝑚−2
𝑦

+ 𝑣𝑚1
𝑦

,                             (2) 

𝑠𝑚
𝑦

= −𝑠𝑚−1
𝑦

− 𝑠𝑚−2
𝑦

− 𝑠𝑚−3
𝑦

+ 𝑣𝑚2
𝑦

,               (3) 

𝑟𝑚
𝑦

= ∑ 𝛼𝑗𝑟𝑚−𝑗
𝑦𝑝

𝑗=1 + 𝑣𝑚3
𝑦

 (𝑚 = 1,2,⋯ ,𝑀),     (4) 

where 𝑡𝑚
𝑦

, 𝑠𝑚
𝑦

, and 𝑟𝑚
𝑦

 are the trend component, the 

seasonal component, and the stationary component, 

respectively, of the time series 𝑦𝑚 . In addition, 𝑝 

represents the order of an autoregressive model for the 

stationary components and 𝛼1 , ⋯ , 𝛼𝑝  are the AR 

coefficients. 𝑤𝑚
𝑦
~N(0, 𝜎2) is the observation noise, while 

𝑣𝑚1
𝑦

~N(0, 𝜏1
2) , 𝑣𝑚2

𝑦
~N(0, 𝜏2

2) , and 𝑣𝑚3
𝑦

~N(0, 𝜏3
2)  are 

system noises for each component model. It is assumed 

that 𝑤𝑚
𝑦
, 𝑣𝑚1

𝑦
, 𝑣𝑚2

𝑦
 and 𝑣𝑚3

𝑦
 are independent of one another.  

When the model order 𝑝 and the hyperparameters 𝛼1 

, ⋯, 𝛼𝑝, 𝜎
2,  𝜏1

2, 𝜏2
2 and 𝜏3

2  are given, we can express the 

models in (1) - (4) by a state space representation. A 

likelihood function for the hyperparameters is defined by 

the Kalman filter algorithm, so we can estimate the model 

order and the hyperparameters using a maximum 

likelihood method. Then, we can estimate each component 

in the time series 𝑦𝑚,  using the Kalman filter algorithm so 

that the estimate for the stationary component 𝑟𝑚
𝑦

 of GDP 

can be obtained (see [11] for details).  

Further, to estimate a stationary component in a 

monthly capacity utilization time series 𝑥𝑛, we use a set of 

models similar to that in (1) - (4) as follows: 

𝑥𝑛 = 𝑡𝑛
𝑥 + 𝑠𝑛

𝑥 + 𝑟𝑛
𝑥 + 𝑤𝑛

𝑥 ,                                 (5) 

𝑡𝑛
𝑥 = 2𝑡𝑛−1

𝑥 − 𝑡𝑛−2
𝑥 + 𝑣𝑛1

𝑥 ,                                (6) 

𝑠𝑛
𝑥 = −𝑠𝑛−1

𝑥 − ⋯− 𝑠𝑛−11
𝑥 + 𝑣𝑛2

𝑥 ,                     (7) 

𝑟𝑛
𝑦

= ∑ 𝛽𝑗𝑟𝑛−𝑗
𝑥𝑞

𝑗=1 + 𝑣𝑛3
𝑥  (𝑚 = 1,2,⋯ ,𝑁),      (8) 

where 𝑞  represents the order of an AR model for the 

stationary component and  𝛽1 , ⋯,  𝛽𝑞  are the AR 

coefficients. 𝑤𝑛
𝑥~N(0, 𝜓2) is the observation noise, while  

𝑣𝑛1
𝑥 ~N(0, 𝜂1

2),  𝑣𝑛2
𝑥 ~N(0, 𝜂2

2) and 𝑣𝑛3
𝑥 ~N(0, 𝜂3

2)  are 

system noises. The other quantities correspond to each 

term in the models in (1) - (4). Thus, the model order 𝑞 and 

the hyperparameters   𝛽1 , ⋯, 𝛽𝑞 , 𝜓
2, 𝜂1

2,  𝜂2
2 and 𝜂3

2   are 

estimated using the same algorithm. As a result, the 

estimate of the stationary component 𝑟𝑚
𝑦

 in the time series 

𝑥𝑛 can be obtained.  

III. PROPOSITION 

A. Model Construction 

To analyze the dynamic relationship between quarterly 

GDP and monthly capacity utilization, we propose an 

approach based on a set of two-mode regression with 

time-varying coefficient (TMR-TVC) models.  

We classify GDP growth into two states, the upside 

mode corresponding to the situation in which the 

stationary component of GDP continues to increase, and 

the downside mode corresponding to the situation in 

which it continues to decrease. We consider that the 

relationship between GDP and capacity utilization may 

differ according to the situation. Thus, we use different 

models for the two modes.  

For the upside mode, the TMR-TVC models are given 

in the form of a regression model with time-varying 

coefficients as follows: 

𝑟𝑚
𝑦

= ∑ 𝑎3(𝑚−1)+𝑖𝑟3(𝑚−1)+𝑖+𝐿1

𝑥3
𝑖=1 + 𝜀𝑚

(1)
,         (9) 

𝑎3(𝑚−1)+3 = 2𝑎3(𝑚−1)+2 − 𝑎3(𝑚−1)+1 

                                                               +𝑒3(𝑚−1)+3,
(1)

     (10) 

𝑎3(𝑚−1)+2 = 2𝑎3(𝑚−1)+1 − 𝑎3(𝑚−1)                       

                                                               +𝑒3(𝑚−1)+2,
(1)

      (11) 

𝑎3(𝑚−1)+1 = 2𝑎3(𝑚−1) − 𝑎3(𝑚−1)−1                       
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                                                               +𝑒3(𝑚−1)+1,
(1)

        (12) 

(𝑚 = 1,2,⋯ ,𝑀), 

where 𝑟𝑚
𝑦

 denotes the estimate of the stationary component 

in the quarterly time series of GDP, which is obtained 

from the estimation of models in (1) - (4), and 𝑟𝑛
𝑥 denotes 

that for the monthly capacity utilization time series, which 

is obtained from theestimation of models in (5) - (8). 𝑎𝑛 is 

the time-varying coefficient that comprises a monthly time 

series, and 𝐿1  denotes a lag. 𝜀𝑚
(1)

~N(0, 𝜆1
2)  is the 

observation noise and 𝑒𝑛
(1)

~N(0, 𝜙1
2) is the system noise 

with 𝜆1
2  and 𝜙1

2  being hyperparameters. We assume that 

𝜀𝑚
(1)

 and 𝑒𝑛
(1)

 are independent of each other for any values 

of  𝑚 and 𝑛. 

The lag 𝐿1 and the time-varying coefficient 𝑎𝑛 are two 

important parameters. From the value of 𝐿1  we can see the 

lead-lag relationship between GDP and capacity 

utilization in which the case where 𝐿1 > 0 implies that 

capacity utilization lags GDP and the case where 𝐿1 < 0 

implies that capacity utilization precedes GDP. Moreover, 

from the estimate of 𝑎𝑛  we can examine the dynamic 

relationship between GDP and capacity utilization. 

The models in (9) - (12) are essentially Bayesian linear 

models in which the model in (9) defines the likelihood 

and the models in (10) - (12) form a second-order 

smoothness prior for the time-varying coefficient. Thus, 

we can estimate the time-varying coefficient with optimal 

smoothness on  𝑎𝑛 by controlling the value of 𝜙1
2.  

Similar to the upside mode, the TMR-TVC models for 

the downside mode are given as 

𝑟𝑚
𝑦

= ∑ 𝑏3(𝑚−1)+𝑖𝑟3(𝑚−1)+𝑖+𝐿2

𝑥3
𝑖=1 + 𝜀𝑚

(2)
,            (13) 

𝑏3(𝑚−1)+3 = 2𝑏3(𝑚−1)+2 − 𝑏3(𝑚−1)+1                        

                                                               +𝑒3(𝑚−1)+3,
(2)

        (14) 

𝑏3(𝑚−1)+2 = 2𝑏3(𝑚−1)+1 − 𝑏3(𝑚−1)                            

                                                               +𝑒3(𝑚−1)+2,
(2)

        (15) 

𝑏3(𝑚−1)+1 = 2𝑏3(𝑚−1) − 𝑏3(𝑚−1)−1                            

                                                               +𝑒3(𝑚−1)+1,
(2)

        (16) 

(𝑚 = 1,2,⋯ ,𝑀), 

with 𝐿2, 𝑏𝑛 being the lag and the time-varying coefficient,  

respectively. In addition, 𝜀𝑚
(2)

~N(0, 𝜆2
2) is the observation 

noise and 𝑒𝑛
(2)

~N(0, 𝜙2
2) is the system noise for the case 

where 𝜆2
2 and 𝜙2

2 are hyperparameters. As in the models in 

(9) - (12), we assume that 𝜀𝑚
(2)

 and 𝑒𝑛
(2)

 are independent of 

each other for any values of  𝑚 and 𝑛. 

Below we only show the methods for estimating the 

hyperparameters in the TMR-TVC models for the upside 

mode because those for the downside mode are similar. 

B. Time-Varying Coefficient Estimation 

Now, we set 

 

𝒛𝑚 = [

𝑎3(𝑚−1)+3

𝑎3(𝑚−1)+2

𝑎3(𝑚−1)+1

],  𝑯𝑚
𝑇 =

[
 
 
 
 𝑟3(𝑚−1)+3+𝐿1

(𝑥)

𝑟3(𝑚−1)+2+𝐿1

(𝑥)

𝑟3(𝑚−1)+1+𝐿1

(𝑥)
]
 
 
 
 

, 

𝑮 = [
1 −2 1
0 1 −2
0 0 1

]

−1

= [
1 2 3
0 1 2
0 0 1

], 

𝑭 = −𝑮 [
0 0 0
1 0 0

−2 1 0
] = [

1 2 3
0 1 2
0 0 1

], 

𝒆𝑚 =

[
 
 
 
 𝑒3(𝑚−1)+3

(𝑥)

𝑒3(𝑚−1)+2
(𝑥)

𝑒3(𝑚−1)+1
(𝑥)

]
 
 
 
 

, 𝑸 = E{𝒆𝒎𝒆𝑚
𝑇 } = 𝜙1

2𝑰3 

with 𝑰3 denoting a 3-th identity matrix. Thus, the models 

in (9) - (12) can be expressed by a state space 

representation as 

𝒛𝑚 = 𝑭𝒛𝑚−1 + 𝑮𝒆𝑚,                            (17) 

𝑟𝑚
𝑦

= 𝑯𝑚𝒛𝑚 + 𝜀𝑚
(1)

.                              (18) 

In the state space representation comprising (17) and 

(18), the time-varying coefficient 𝑎𝑛  is included in the 

state vector 𝒛𝑚. So, the estimate for 𝑎𝑛 can be obtained 

from the estimate of  𝒛𝑚. Moreover, the parameters,  𝜆1
2 

and 𝜙1
2,  which are called hyperparameters, can be 

estimated using the maximum likelihood method. 

Let  𝒛0 denote the initial value of the state and let 𝑌1
(𝑘)

 

denote a set of estimates for 𝑟𝑚
𝑦

 up to time point k, where 𝑘 

denotes a quarter. Assume that 𝒛0~N(𝒛0|0, 𝑪0|0).  

Because the distribution 𝑓(𝒛𝑚| 𝑌1
(𝑘)

)  for the state 𝒛𝑚 

conditional on  𝑌1
(𝑘)

 is Gaussian, it is only necessary to 

obtain the mean 𝒛𝑚|𝑘 and the covariance matrix 𝑪𝑚|𝑘 of 

𝒛𝑚 with respect to  𝑓(𝒛𝑚| 𝑌1
(𝑘)

). 

Given the values of 𝐿1 , 𝜆1
2  and 𝜙1

2,   the initial 

distribution N(𝒛0|0, 𝑪0|0), and a set of estimates for 𝑟𝑚
𝑦

 up 

to time point 𝑀, the means and covariance matrices in the 

predictive distribution and filter distribution for the state 

𝒛𝑚  can be obtained using the Kalman filter for 𝑚 =
1,2,⋯ ,𝑀 (see for example, [11]): 

 

[Prediction] 

              𝒛𝑚|𝑚−1 = 𝑭𝒛𝑚−1|𝑚−1,                    

             𝑪𝑚|𝑚−1 = 𝑭𝑪𝑚−1|𝑚−1𝑭
𝐭  + 𝑮𝑸𝑮𝐭.   

 

[Filter-1] 

      𝑲𝑚 = 𝑪𝑚−1|𝑚−1𝑯𝑚
𝐭 (𝑯𝑚𝑪𝑚−1|𝑚−1𝑯𝒎

𝐭 + 𝜆1
2)

−1
, 

          𝒛𝑚|𝑚 = 𝒛𝑚|𝑚−1 + 𝑲𝑚(𝑟𝑚
𝑦

− 𝑯𝑚𝒛𝑚|𝑚−1),  

              𝑪𝑚|𝑚 = (𝑰3 − 𝑲𝑚𝑯𝑚)𝑪𝑚|𝑚−1. 

 

[Filter-2] 

              𝒛𝑚|𝑚 = 𝒛𝑚|𝑚−1,                    
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             𝑪𝑚|𝑚 = 𝑪𝑚|𝑚−1.   

 

Note that for EACH value of 𝑚, when the time point 𝑚 is 

in an upside period we use Filter-1; otherwise Filter-2 is 

applied. 

Based on the results of the Kalman filter, we can obtain 

an estimate for 𝒛𝑚 using the fixed-interval smoothing for 

𝑚 =  𝑀 − 1,𝑀 − 2,⋯ ,1 as follows: 

[Fixed-Interval Smoothing] 

                  𝑨𝑚 = 𝑪𝑚|𝑚𝑭𝐭𝑪𝑚+1|𝑚
−1 , 

𝒛𝑚|𝑀 = 𝒛𝑚|𝑚 + 𝑨𝑚(𝒛𝑚+1|𝑀 − 𝒛𝑚+1|𝑚), 

        𝑪𝑚|𝑀 = 𝑪𝑚|𝑚 + 𝑨𝑚(𝑪𝑚+1|𝑀 − 𝑪𝑚+1|𝑚)𝑨𝑚
𝐭 . 

Then, the posterior distribution of 𝒛𝑚 is given by 𝒛𝑚|𝑀 

and 𝑪𝑚|𝑀 . Subsequently, the estimate for the time-varying 

coefficient 𝑎𝑛  can be obtained because the state space 

representation described by (17) and (18) incorporates 𝑎𝑛 

in the state vector 𝒛𝑚. 

C. Constant Parameters Estimation 

Given the time series data  𝑌1
(𝑀)

= {𝑟1
𝑦
, 𝑟2

𝑦
, ⋯ , 𝑟𝑀

𝑦
}  and 

the corresponding time series data {𝑟1
𝑥 , 𝑟2

𝑥 , ⋯ , 𝑟3𝑀
𝑥 },   a 

likelihood function for the hyperparameters 𝜆1
2  and 𝜙1

2  

and the parameter  𝐿1  is given by: 

𝑓(𝑌1
(𝑀)

|𝜆1
2, 𝜙1

2, 𝐿1) = ∏ 𝑓𝑚(𝑟𝑚
𝑦
|𝜆1

2 , 𝜙1
2, 𝐿1),

𝑀

𝑚=1

     

where 𝑓𝑚(𝑟𝑚
𝑦
|𝜆1

2, 𝜙1
2, 𝐿1) is the density function of 𝑟𝑚

𝑦
.  By 

taking the logarithm of 𝑓(𝑌1
(𝑀)

|𝜆1
2, 𝜙1

2, 𝐿1) , the 

log-likelihood is obtained as 

𝑙(𝜆1
2, 𝜙1

2, 𝐿1) = log 𝑓(𝑌1
(𝑀)

|𝜆1
2, 𝜙1

2, 𝐿1)     

                                     = ∑ log 𝑓𝑚(𝑟𝑚
𝑦
|𝜆1

2, 𝜙1
2, 𝐿1)

𝑀
𝑚=1 .    (19) 

Following [11], using the Kalman filter, the density 

function  𝑓𝑚(𝑟𝑚
𝑦
|𝜆1

2, 𝜙1
2, 𝐿1)  is a normal density given by: 

𝑓𝑚(𝑟𝑚
𝑦
|𝜆1

2, 𝜙1
2, 𝐿1) =

1

√2𝜋𝑤𝑚|𝑚−1

 

                            × exp {−
(𝑟𝑚

𝑦
−𝑟̂𝑚|𝑚−1

𝑦
)
2

2𝑤𝑚|𝑚−1
}      (20) 

where 𝑟̂𝑚|𝑚−1
𝑦

is the one-step-ahead prediction for  𝑟𝑚
𝑦

  and 

𝑤𝑚|𝑚−1 is the variance of the predictive error, respectively 

given by 

                       𝑟̂𝑚|𝑚−1
𝑦

= 𝑯𝑚𝒛𝑚|𝑚−1, 

𝑤𝑚|𝑚−1 = 𝑯𝑚𝑪𝑚−1|𝑚−1𝑯𝒎
𝐭 + 𝜆1

2. 

Moreover, for a fixed value of 𝐿1, the estimates of the 

hyperparameters can be obtained using the maximum 

likelihood method, i.e., we can estimate the 

hyperparameters by maximizing the log-likelihood 

𝑙(𝜆1
2, 𝜙1

2, 𝐿1) in (19) together with (20). In practice, when 

we substitute the new  𝜆1
2 = 1   into the Kalman filter 

algorithm outlined above, the estimate 𝜆̂1
2  for 𝜆1

2  is 

obtained analytically by 

𝜆̂1
2 =

1

𝑀
∑

(𝑟𝑚
𝑦

−𝑟̂𝑚|𝑚−1
𝑦

)
2

𝑤𝑚|𝑚−1

𝑀
𝑚=1 .                    (21) 

Thus, an estimate 𝜙̂1
2  for 𝜙1

2  can be obtained by 

maximizing the log-likelihood 𝑙(𝜆̂1
2, 𝜙1

2, 𝐿1) using (21). 

Information about the value of lag 𝐿1 is important for 

analyzing the lead-lag relationship between GDP and 

capacity utilization, and can be obtained from the 

maximum value of the likelihood function. For a given 

value of the lag 𝐿1, the maximum likelihood is given as 

𝑓(𝑌1
(𝑀)

|𝜆̂1
2, 𝜙̂1

2, 𝐿1) . Then, for a set {𝐿1
(1)

, 𝐿1
(1)

+

1,⋯ , 𝐿1
(2)

− 1, 𝐿1
(2)

} of values for 𝐿1 we can calculate the 

relative likelihood by 

𝑅(𝐿1) =
𝑓(𝑌1

(𝑀)
|𝜆̂1

2, 𝜙̂1
2, 𝐿1)

∑ 𝑓(𝑌1
(𝑀)

|𝜆̂1
2, 𝜙̂1

2, 𝑗)
𝐿1
(2)

𝑗=𝐿1
(1)

 

(𝐿1 = 𝐿1
(1)

, 𝐿1
(1)

+ 1,⋯ , 𝐿1
(2)

− 1, 𝐿1
(2)

) 

with 𝐿1
(1)

 and 𝐿1
(2)

 denoting an negative integer and a 

positive integer respectively. Thus, we can analyze the 

lead-lag relationship between GDP and capacity 

utilization from the distribution of the relative likelihood 

on 𝐿1 . The same is used to analyze the lag  𝐿2  in the 

downside-mode models.  

IV. EMPIRICAL ANALYSIS 

Here, we present an empirical study analyzing the 

relationship between real GDP and capacity utilization 

(especially that for the manufacturing industry) in Japan 

for the period between 1980 and 2005. The real GDP data 

are obtained from the Cabinet Office, Government of 

Japan, while the capacity utilization data are obtained from 

the website of the Ministry of Economy, Trade and 

Industry, Japan.  

 

Figure 1. Real GDP time series data for Japan (1980Q1 - 2005Q4). 

 

Figure 2. Capacity utilization time series data for Japan (1978.1 - 

2007.12). 
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Figs 1 and 2 show the quarterly real GDP time series for 

the period 1980Q1 - 2005Q4 and the monthly capacity 

utilization time series for the period 1978.1 - 2007.12, 

respectively. Note that GDP is measured in billions of 

Japanese Yen. 

For simplicity of parameter estimation, we adjust the 

scale for the GDP time series. Specifically, letting 𝑦𝑚
∗  

denote the original GDP data, we adjust the associated 

scale by  

𝑦𝑚 = 100 ×
𝑦𝑚

∗

𝑦1
∗    (𝑚 = 1,2,⋯ ). 

In addition, because time series 𝑥𝑛
∗  for capacity 

utilization is an index, we transform it as follows: 

𝑥𝑛 = log(𝑥𝑛
∗)   (𝑛 = 1,2,⋯ ). 

In the analysis below, we use the scale-adjusted time 

series 𝑦𝑚  as the GDP data and the logarithmically 

transformed time series 𝑥𝑛 as the capacity utilization data.  

To estimate the stationary component in GDP, we 

compute the log-likelihoods of the models in (1) - (4) for 

𝑝 =  1, 2, 3, 4. Table I shows the values of the 

log-likelihood for each value of 𝑝. From Table I, we can 

see that the maximum log-likelihood is obtained for 

models with 𝑝 = 1. Thus, we use models with 𝑝 = 1 as a 

set of the best models for data analysis.  

TABLE I. LOG-LIKELIHOOD OF MODEL IN (1) - (4) 

p = 1 p = 2  p = 3 p = 4 

-230.63 -231.46 -231.82 -231.21 

 
Similarly, to estimate the stationary components of 

capacity utilization, we compute the log-likelihoods of  the 

models in (5) - (8) for 𝑞 = 1, 2, …, 12. Table 2 shows the 

values of the log-likelihood for each value of q. From 

Table 2, it can be seen that the values of the 

log-likelihoods are almost monotonously increasing with 

the value of q. However, when the value of q is made even 

larger, it runs the risk of unstable estimates for parameters 

in the models, hence we take the models with 𝑞 =  12 as a 

set of reasonable models. Thus, in the data analysis, we 

use the models for capacity utilization with 𝑞 =  12.  

TABLE II. LOG-LIKELIHOOD OF MODEL IN (5) – (8) 

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 

889.02  888.54  889.85  904.57  904.25  907.61  

q = 7 q = 8 q = 9 q = 10 q = 11 q = 12 

913.47  915.48  914.13  922.27  922.13  926.20  

 

Fig. 3 shows the estimate for the stationary component 

of GDP.  The thin line shows the original estimate and the 

thick line shows the seven-quarter moving average. The 

vertical lines indicate inflections of the business cycle (the 

solid and broken lines indicate peaks and troughs, 

respectively). It can be seen from Fig. 3 that fluctuations in 

the stationary component of GDP correlate closely with 

business cycles in Japan.  

 

Figure 3. Time series for the estimation of the stationary components of 
real GDP. The vertical lines indicate turning points in the business cycle 

(the solid and broken lines indicate peaks and troughs, respectively). 

 

Figure 4. Time series for the estimation of the stationary component of 
the capacity utilization. The vertical lines indicate inflections of the 

business cycle (the solid and broken lines indicate peaks and troughs, 

respectively). 

The estimate for the stationary component of capacity 

utilization is shown in Fig. 4. Similar to Fig. 3, the vertical 

lines indicate inflections in the business cycle (the solid 

and broken lines indicate peaks and troughs, respectively).  

From Fig. 4, we can see that fluctuations in the 

stationary component of capacity utilization are almost 

in harmony with business cycles in Japan.  
Fig. 5 shows the relative likelihood distribution of the 

lags between -24 and 24 in the capacity utilization models, 

with the horizontal axis representing time in months. It can 

be seen from Fig. 5 that in panel (a), the relative likelihood 

for the upside-mode model shows a peak corresponding to 

a two-month lead. Moreover, the result for the 

downside-mode model, which is shown in panel (b), 

shows that a peak in relative likelihood is observed at a 

three-month lead. The above results imply that in both the 

expansion and recession phases, capacity utilization leads 

GDP with a short lead time. However, looking at Fig. 5 in 

detail, it can be seen that the relative likelihood for the 

upside-mode model is distributed over a wider range than 

that for the downside-mode model. This suggests that the 

estimated lags for the upside-mode model may show 

greater fluctuations.  

 

Figure 5. Relative likelihood distribution on the lag. 
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We show time series of the estimates for the 

time-varying coefficient in Fig. 6, in which panel (a) is the 

time-varying coefficient for the upside-mode models with 

𝐿1 = −2  and panel (b) is that for the downside-mode 

models with 𝐿2 = −3. It can be seen that the time-varying 

coefficients take positive values in both cases. However, 

for the upside-mode models, the estimate for the 

time-varying coefficient has continued to rise, while for 

the downside-mode model it shows significantly larger 

values during the bubble economy period since the 1990s 

in Japan.  

 

Figure 6. Time series of the time-varying coefficient. 

V. CONCLUSIONS 

We analyzed the dynamic relationship between the 

stationary components of GDP and capacity utilization in 

Japan from 1980 to 2005. The main results can be 

summarized as follows: In both the expansion and 

recession phases of the business cycle, a movement in 

capacity utilization has preceded a movement in GDP by 

several months. This implies that capacity utilization can 

be used to predict the monthly value of GDP, and can also 

be regarded as a leading indicator of the business cycle. 

Therefore, information from movements in capacity 

utilization provide telling clues for forecasting trends in 

the Japanese economy and business conditions. 

We obtained the following key findings. Capacity 

utilization had a larger influence on GDP in the recession 

phase than in the expansion phase during the 1980s. 

However, the reverse has applied since the 1990s, i.e., the 

influence of capacity utilization on GDP has been larger in 

the expansion phase than in the recession phase. In 

addition, the time-varying coefficients in the expansion 

and recession phases show very different patterns since the 

1990s. For the expansion phase, the positive effect of 

capacity utilization on GDP has exhibited an upward trend 

since the 1990s. In contrast, for the recession phase, the 

positive effect of capacity utilization on GDP has 

exhibited a downward trend since the 1990s.  

Therefore, in terms of policies aimed at promoting 

economic growth, an increase in capacity utilization is 

expected to have a relatively large impact on economic 

growth during periods of expansion. This implies that 

investment in equipment by the Japanese manufacturing 

industry during periods of expansion is becoming 

increasingly important.  
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