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Abstract—Driven by a real-world application in the 

aluminum industry, this paper provides a mathematical 

model to tackle the billet scheduling problem at the casting 

stage. The casting stage is where the molten metal is poured 

into the moulds to solidify and form the required shape 

based on the orders’ specifications. The objective is to find 

an optimal scheduling for the billet production at the 

casting stage by minimizing the total production time and 

total set up times on the casting centers. In the aluminum 

industry, casting is a determinant of plant throughput as 

the production is limited by the amount that can be cast. So 

it is essential for the company to minimize setup time and 

processing time on production lines for a given time period 

to accommodate potential new orders. The problem is 

identified as a parallel machine scheduling problem with 

sequence-dependent setup times with very specific 

constraints imposed by the process control department to 

guarantee good quality products. A mathematical 

formulation to minimize the total processing and set up 

times on the casting centers is presented. Even though the 

problem is NP-hard, the model is solved using an exact 

method on a real case within just few seconds. Experimental 

results based on randomly generated data sets show that the 

model is efficient for most instances with reasonable sizes.  
 

Index Terms—scheduling,      mixed        integer       linear 

programming, aluminum production 

 

I.   INTRODUCTION 

Globally, aluminum is a growing sector and is 

considered to be the metal of the future, especially due to 

its properties like lower weight, corrosion resistance and 

higher electrical conductivity [1]. Today, aluminum 

ranks number two in the consumption volumes among all 

the metals, surpassed only by steel. In the coming 

decades the demand for aluminum will continue 

increasing at unstoppable rates [2]. According to UC 

RUSAL, leader of the global aluminum industry (2015), 

overcapacity in the Chinese aluminum market continued 

throughout the first half of 2015. Thus, there is supply 

problem of raw material in this sector and today’s 

competition in has made industries seek for more 

efficient and effective production planning methods. In 
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Aluminum industry, the production process is very 

complex and involves a lot of characteristics such as 

casting, rolling and homogenizing. This constitutes a 

challenge for the planning systems where certain 

planning and scheduling principles are applied [3]. This 

research work is based on a real industrial case from a 

company competing in the aluminum industry. The focus 

is to define a short term production plan to a series of 

casting lines for the billet product. 

Billets are a length of metal with round cross section 

(cylindrical shape) used for extrusion and forging 

processes in industry. The billet production process is 

done in two stages: casting stage and finishing stage. At 

the casting stage, billets are formed through direct 

casting machines. Each casting unit is connected to three 

furnaces, one smelter and two holder furnaces. The 

smelter furnace has the ability to melt high amount of 

scrap while the holders are used to accommodate the 

direct hot metal poured from the crucibles. During the 

furnace preparation, a unique recipe of elements is added 

to the pure aluminum such as silicon, magnesium, copper 

and many others. This unique recipe is referred to as 

Alloy. Once the metal is ready in the furnace, it is poured 

into the casting table where it will be solidified in the 

required billet diameter size. Each diameter requires a 

different casting table with the required mould size. After 

solidification, the billet logs enter the finishing stage 

whereby the billets are taken from the table to the lay-

down area where an inspection test is performed to 

capture any defects in billets. After that the billet logs 

enter the homogenizers to improve the mechanical 

properties of the billets.  

In our case study, casting is a determinant of plant 

throughput as the production is limited by the amount 

that can be cast. So it is essential for the company to 

minimize production time on production lines for a given 

time period to accommodate potential new orders. 

The site contains a total of five direct casting machines. 

However they differ in size, capacity, and capability of 

producing the different diameters, making the decision of 

assigning jobs to machines critical. Each diameter 

requires a different casting table which contains the 

required mould size. Some diameters share the same 

table base while the moulds are changed based on the 
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size. Thus, the preparation (setup) time is sequence 

dependent. 

In addition to minimizing processing times and setup 

times, two additional conditions set by the process 

control department at the company must be considered. 

The first condition imposes a minimum number of hours 

for the diameter moulds to stay in production before 

other diameter moulds are installed.  This is imposed to 

avoid misusing the moulds as each time the moulds are 

removed they are sent to the mould shop to be prepared 

for the next run. It’s also to provide the mould shop team 

enough time to prepare the moulds required for the next 

Diameter. The second condition limits the number of 

drops casted continuously using the same diameter 

moulds. This limit is set to avoid any quality issues in the 

product. If the number of drops reached this fixed 

number, the diameter moulds must be changed. 

The remainder of the paper is organized as follows. In 

Section II, we present a brief survey of relevant literature 

and highlight the contribution of our work. The 

mathematical programming formulation is presented in 

Section III. Section IV presents the computational 

analysis on real data and on randomly generated 

instances. Finally, conclusions and future research 

directions are presented in Section V. 

II.   LITERATURE REVIEW AND CONTRIBUTION 

Very few studies on aluminum industry address the 

scheduling problem. In [4], the scheduling problem on a 

single casting machine was addressed. In their model, the 

jobs are already assigned to the machines, so the 

objective was to find the sequence in which to cast 

aluminum logs such that set up times are minimized. The 

problem was formulated as a traveling salesman problem 

and solved using a genetic algorithm. In [5], a scheduling 

problem for continuous aluminum casting lines was 

studied. Their problem is very close to the problem 

addressed here in the sense that they are solving a 

continuous aluminum casting scheduling problem with 

parallel machines. However, [5] just consider work 

balance as an objective, instead of makespan 

minimization (in our case) and don’t consider the new 

case-specific constraints imposed by the company in our 

case. The authors proposed a four step algorithm to find a 

good feasible solution in a reasonable amount of time. 

They solved a set of asymmetric travelling salesman 

problems by a pairwise exchange heuristic and applied it 

on a real case. 
Our problem can be considered as an extension of the 

unrelated parallel machine scheduling problem with 

sequence dependent setup times. Tens of thousands of 

papers have been published on scheduling problems 

since the 1950s, where the first systematic approach to 

scheduling was used in [6]. Several books and textbooks 

were also published on the subject, including, among 

others, [7] and [8]. Among the most comprehensive 

surveys on scheduling problems, especially those with 

setup times/costs and parallel machines are [6] and [9]. 

Considering setup time in scheduling problems makes 

considerable cost reductions when solving scheduling 

problems. In most industries, it is not reasonable to just 

ignore them. This is the case in the aluminum industry. 

Furthermore, in most foundries, there are several 

furnaces or casting machines working in parallel and one 

of the decisions that has to be taken by the planner is the 

assignment of orders/jobs to the different parallel 

resources. Scheduling problems with parallel machines 

have also been extensively studied in the scheduling 

literature (See [7] for a presentation of these problems).  

Scheduling problems are usually classified as NP-hard 

in the strong even in the case of single machine problems 

with some optimality criteria (See [10]). Thus most 

solution methods developed for such problems are 

heuristic and metaheuristic algorithms. Examples of 

heuristics developed for scheduling problems with 

parallel machines are presented below. Vallada and Ruiz 

[11] proposed a genetic algorithm that includes a fast 

local search and a local search enhanced crossover 

operator to solve the unrelated parallel machine 

scheduling problem minimizing the makespan. A 

restricted Simulated Annealing was presented by [12] 

which incorporates a restricted search strategy to 

minimize the makespan. Arnaout et al., [13] presented an 

Ant Colony Optimization to solve the unrelated parallel 

machines scheduling problem minimizing the makespan. 

The performance of the method was evaluated by 

comparing its solutions to solutions obtained using Tabu 

Search and MetaRaPS (Metaheuristic for Randomized 

Priority Search). A clonal selection algorithm was 

presented in [14] to solve the problem of minimizing the 

makespan on unrelated parallel machines with sequence-

dependent setup times. The algorithm developed was 

compared directly to the genetic algorithm proposed by 

[11], to the Ant Colony algorithm by [13] and to the 

Simulated Annealing algorithm proposed by [12], which 

have the best performance for the instances available in 

the literature. The comparison shows that the clonal 

algorithm was more efficient. A recent study of Rosales 

et al. [15] suggested a new makespan linearization and 

proposed several mixed integer formulations for the 

unrelated parallel machine scheduling problem with 

sequence and machine dependent setup times and 

makespan minimization. A metaheuristic was also 

developed providing small deviations from optimal 

solutions in medium sized instances. 

Only few studies have developed exact methods to 

solve scheduling problems unrelated parallel machines. 

As the problem is NP hard, optimal solutions are found 

only for instances with a small number of machines and 

jobs [14]. Martello et al., [16] presented a Branch and 

Bound (B&B) algorithm operating in conjunction with a 

Lagrangian relaxation for the determination of lower 

bounds for problems in which the objective is to 

minimize the makespan. Liaw et al., [17] propose a B&B 

algorithm to minimize the weighted sum of tardiness, 

presenting a function as a lower bound and a heuristic as 

an upper bound. The setup times between jobs are not 

considered in any of these works. Rocha et al., [18] 

considered the setup times and presented a B&B 
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algorithm for minimizing the weighted sum of tardiness 

while Tran and Beck [19] used a logic based Benders 

decomposition approach to minimize the makespan. 

Real-world production scheduling problems often 

result in even more intractable models; only realistic 

modeling of the problem features can help managers in 

their decisions. Thus, developing specific algorithms to 

solve the problem in such a way that these algorithms are 

flexible enough to accommodate frequent changes in the 

problem description by the companies is very 

challenging. It is for this reason that the authors have 

chosen to build a Mixed Integer Linear Programming 

formulation (MILP) that can be solved using a MILP 

solver and that can be modified easily to accommodate 

very specific constraints. The mathematical programming 

formulation is efficient in the sense that it needs very few 

minutes to find the optimal solution (see Section IV). 

Once the problem is well defined and all constraints are 

identified, it will be possible to think about other 

extensions of this study by developing fast and dedicated 

algorithms, for example. 

III. PROBLEM FORMULATION 

In order to state the scheduling model minimizing 

the total processing time and total set up times on 

the casting centres, the following notation is used: 
Indices and sets: 

n:  number of jobs to be scheduled 

D:  number of diameters than can be manufactured 

K:  number of machines available 

i, j: Job (i, j = 1, …., n)  

d: Job diameter (d = 1,…, D) 

k: Machines (k = 1, …, K) 

Jk : Set of jobs that can be processed on machine k 

Parameters: 

qi: Size of job i  

di: Diameter of job i  

AVk : Availability of machine k in hours based on 

shutdown plan    

pik : Processing time of job i on machine k 

Sijk: Setup time required if job i immediately precedes 

job j on machine k 

MRHd: Minimum run hours of diameter d  

Bsdk
 : Average batch size of diameter d on machine k  

MaxC: Maximum number of batches allowed in one 

diameter before changing to another  

Decision Variables:  

Yik =  1, if job i is assigned to machine k, 0 otherwise. 

Xijk = 1, if job i is the immediate predecessor of job j on 

machine k, 0 otherwise. 

Zdk = 1, if diameter d is assigned to casting line k, 0 

otherwise 

Uik : Continuous variable used in the subtour 

elimination constraints.  

Using the above notation, a mixed integer linear 

programming model can be formulated as follows. 

Minimize      ∑ ∑  Pik Yik

i∈ Jk k

+ ∑ ∑ ∑  SijkXijk

j∈ Jk i∈ Jk k

     (1) 

subject to 

Yik = 0                                                 ∀k, ∀ i ∉ Jk         (2) 

∑ Yik = 1 

k∈K

                                                ∀ i ≠ 0       (3) 

∑  Pik Yik

i∈Jk

+ ∑ ∑  SijkXijk

j∈ Jk i∈ Jk 

≤   AVk     ∀ k           (4) 

Y0k = 1                                                               ∀  k      (5) 

∑ X0ik

i∈Jk 

= 1                                                       ∀ k       (6) 

∑ Xijk

j∈ Jk 

≤ Yik                                   ∀ k , ∀ i ∈  Jk      (7) 

∑ Xjik

j

≤ Yik                                    ∀ k, ∀i ∈  Jk         (8) 

∑ Yik ≤ 

i∈J𝑘∖di=d

n × Zdk                         ∀ d  , ∀k         (9) 

n × ∑ Yik ≥ 

i∈J𝑘∖di=d

Zdk                          ∀ D , ∀ k     (10) 

∑  

i∈J𝑘\di=d

YikPik ≥ MRHd  Zdk              ∀ d  , k        (11) 

∑  

i∈J𝑘\di=d

q𝑖  

Bsdk
  Yik  ≤ MaxC               ∀ d , k           (12) 

Uik  ≥   PikYik                             ∀  i , i ≠ 0, ∀k         (13) 

Uik  ≤  AVk                                 ∀  i , i ≠ 0, ∀k         (14) 

Uik −   Ujk  + AVk Xijk ≤  AVk − PjkYjk       

              ∀  i\ i ≠ 0 , j, i ≠ j , k          (15) 

Xijk  ∈   {0,1}                                ∀  i, j  , k               (16) 

Yik  ∈   {0,1}                                            ∀  i , k          (17) 

Zdk  ∈   {0,1}                                          ∀  d , k         (18) 

Uik  ≥  0                                                   ∀  i , k          (19) 

The objective function (1) of the proposed model is to 

minimize CTotal the total processing time and setup time 

of all jobs on all machines. Constraints (2) impose that 

each job i will not be assigned to machine k if it is not 

applicable on it (i ∉ Jk). Constraints (3) ensure that all 

the jobs are assigned to a casting centre. Constraints (4) 

state that the workload assigned to any line cannot 

exceed the number of hours during which the machine is 

available for production. This also helps in considering 

the planned shutdowns for the casting centres. By 

applying constraints (5) and (6), we ensure that the 
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dummy job “0” is assigned to all machines to define the 

status of the machines while assigning the new jobs. 

Constraints (7) and (8) control the inflow and outflow of 

the jobs and ensure that a job succeeds/precedes only one 

job. Constraints (9) and (10) are added to define the 

value of Zdk as a function of Yik. If any job of diameter d 

is assigned to machine k, then Zdk must be = 1, 0 

otherwise. Constraints (11) restrict the minimum hours 

for the diameter moulds to stay in production before 

another diameter moulds are installed.  This is imposed 

to avoid misusing the moulds as each time the moulds are 

removed they are sent to the mould shop to be prepared 

for the next run. It’s also to provide the mould shop team 

enough time to prepare the moulds required for the next 

Diameter. Constraint (12) guarantees that the number of 

drops casted continuously using the same diameter 

moulds does not exceed MaxC drops. This limit is set by 

process control to avoid any quality issues in the product. 

For example, in the test case, MaxC=80 drops. After the 

80th drop the diameter moulds should be changed. 

Constraints (13), (14), and (15) represent the Miller-

Tucker-Zemlin (MTZ) formulation. This formulation is 

added for sub-tours eliminations and it’s inspired from 

[20]. Constraints (16) to (19) are integrality and non-

negativity constraints.  

IV. COMPUTATIONAL ANALYSIS 

On average the aluminum plant of our case study 

receives about 1000-1500 orders each month. Each order 

is characterized by its diameter, alloy and quantity. The 

company offers 13 different diameters and produces 

hundreds of different alloys that are grouped into families 

based on their chemical composition. A decision 

supported by the company management was made to 

further classify them based on their homogenizing route 

(Batch or Continuous). This decision was as the alloy 

type is not a significant criterion while scheduling the 

orders on the machines as the diameter size. This 

decision has identified the job in our model as group of 

orders that shares the same diameter and homogenizing 

route. For example, diameter A can have two jobs as A-

Batch and A-Normal. As a result of this order 

consolidation, the number of jobs to be scheduled is 

reduced to 50-60 per month. 

TABLE I. TEST CASE 1 DATA 

Job  Diameter  Processing Time 

1 1 40.70 

2 1 12.21 

3 2 81.40 

4 2 28.49 

5 3 46.33 

6 3 28.30 

7 4 56.98 

8 4 36.63 

9 5 56.43 

10 5 48.84 

11 6 40.70 

12 6 44.77 

13 7 116.80 

14 8 71.50 

15 9 38.80 

A sample of consolidated data is given in Table I. The 

data concerns a weekly schedule. These data provide 

information on the diameter and processing time required 

for each job. The jobs are associated with 9 different 

Diameters. The 5 machines are operating with full 

capacity of 168 hours. The minimum run hour MRH is 

equal to 48 for all diameters except for diameter 9 which 

is equal to 24. The maximum limit drops is equal to 80 

for all diameters. 

The optimal solution is found in 1.5 seconds with the 

objective value of 761.49. The generated schedule is 

shown in “Fig. 1”. The setup times are dark shaded in the 

figure. 

 

Figure 1. Gantt chart for the company schedule weekly data 

A.

 

Experimentation on Randomly Generated Data 

The model was implemented on FICO Xpress 2013, 

with optimizer version 24 running on Microsoft 

Windows 7 on a PC with CPU Intel i7 and 16GB RAM. 

It was tested on randomly generated problems. 

Sensitivity studies on number of jobs, number of 

diameters, availability of machines and density of the 

distribution of jobs on machines are also conducted, 

which provide some useful insights for industrial 

managers. Moreover, the proposed model is applied to a 

real-world case on a real data.  

TABLE

 

II.

 

CPU FOR THE DIFFERENT TESTING SAMPLES WITH 

DIFFERENT AVAILABILITY OF MACHINES

 

  

Without 

Shutdown

 With Shutdown

 

 

Jobs

 20

 

0.534

 

0.381

 

30

 

2.457

 

1.781

 

40

 

63.700

 

34.798

 

80

 

218.140

 

151.308

 

 

Diameter 

 7

 

72.000

 

102.883

 

15

 

22.116

 

39.532

 

Average

 

63.158

 

55.114

 

 

Different samples of different sizes shown in Table II

 

are tested for this computational study. For each problem 

size we studied the effect of the availability of the 

machines. We generate samples where all machines are 

functional (no planned shutdown) and samples where a 

shutdown occurs on one machine reducing its availability 

by 30%. In Table III, we studied also the effect of the 

distribution of jobs on machines as the machines are not 

identical and each one has its set of jobs that can process. 

We assume that in average jobs can be processed by 70% 

of the machines (density 70%), or 50% (density 50%). 

The results are summarized in Table III. For each case, 

five instances are generated and the average is calculated. 

The criterion used to measure and evaluate the 

effectiveness of the developed model is the CPU 
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computational time. It measures computation speed of 

the algorithm.  

TABLE III. CPU FOR THE DIFFERENT TESTING SAMPLES WITH 

DIFFERENT DENSITY OF DISTRIBUTION 

  Density 70% Density 50% 

 

Jobs 

20 0.7168 0.170 

30 63.0146 2.048 

40 6.2158 63.994 

80 144.4946 135.483 

 
Diameter  

7 95.887 63.678 

15 11.334 37.169 

Average  53.610 50.424 

 

For all the samples tested, we can remark that the CPU 

is relatively small; the maximum is approximately 3min 

30s for 80 jobs. With the growth of problem size, we can 

observe that CPU increases while in average CPU 

decreases when the number of diameters increases. This 

can be explained by the limitation of feasible solutions 

when the number of diameters increases. When varying 

the machine availability by considering the case with no 

shutdowns and the case with shutdowns on one machine 

reducing its availability by 30%, the results shown in 

Table II reveal that when shutdowns occur the program 

has less difficulty to find the optimal solution. However 

the CPU time remains small. From Table III, it can be 

noticed that the CPU time is very sensitive to the density 

of distribution of assignment of jobs to machines. 

V.   CONCLUSION  

In this paper, a mathematical model for scheduling 

aluminum billet on casting centers in an aluminum 

industry located in Dubai was developed. The proposed 

model takes into consideration all requirements and 

constraints which are related to the casting stage to 

provide the best allocation and sequencing of jobs on the 

casting centers. The model was implemented and solved 

using a state of the art commercial solver where the 

optimal solution was found within seconds for real 

problem size. The provided model will be used by the 

company as initial step toward automating the whole 

planning and scheduling process of the company. Despite 

the accomplishment done, there are areas of 

improvement for the model and room for future work. 

The model presented here considers the casting stage 

only. It’s recommended to include the homogenization 

stage and see what impact it will have on the schedule 

and total production output. It is also suggested to solve 

the model for a longer planning horizons. For a larger 

planning horizon, the problem become more challenging 

as the number of jobs increases and the complexity of the 

problem too. For these problems, we are intending to 

implement efficient metaheuristics to obtain good 

solutions within a very short CPU time. 
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