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Abstract—The success of integration of Statistical Process 

Control (SPC) and Engineering Process Control (EPC) has 

been reported in recent years. However, the SPC Control 

Chart Pattern (CCP) has become more difficult to be 

classified due to the fact that the process disturbances were 

embedded in the system. Although some studies have 

focused on the classification tasks for a manufacturing 

process, they only considered the individual or basic 

disturbance type in a process. There has been very little 

research addressed on the classification of mixture of 

individual disturbance in a SPC-EPC system. The purpose 

of the present study is therefore to propose an effective way 

to deal with the classification of mixture CCPs for a SPC-

EPC process. Because of its excellent performance on 

classification tasks, this study employs the Artificial Neural 

Network (ANN) approach to recognize the mixture patterns 

of the underlying disturbances. Simulation results revealed 

that the proposed SVM scheme is able to effectively identify 

various mixture types of disturbances for an SPC-EPC 

system. 

 
Index Terms—disturbance, mixture pattern, artificial neural 

network, SPC, EPC 

 

I. INTRODUCTION 

The Statistical Process Control (SPC) charts have been 

widely used in monitoring the manufacturing processes. 

The function of SPC chart is to trigger an out-of-control 

signal when a disturbance was intruded into a process. 

Typically, when an observation falls outside the control 

limits, the process is said to be out of control. The process 

personnel should start to investigate the root causes for 

the underlying disturbances. If the root causes can be 

correctly determined and removed, the process 

improvement can be quickly achieved. However, the 

determination of root causes may be difficult in practical 

applications. 

Another indication of out-of-control is that the Control 

Charts Patterns (CCPs) exhibit unnatural structures [1]. 

Different kinds of disturbances possess different type of 

CCPs. Different kinds of CCPs would be associated with 

certain root causes which adversely upset the process. For 

example, a shift disturbance pattern is typically 

associated with the new methods or new raw materials. 

As a consequence, the issue of how to effectively classify 
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those unusual CCPs is very important for the SPC 

applications. 

In addition, because the typical SPC charts may be 

ineffective when process outputs are correlated, the 

engineering process control (EPC) is combined with SPC 

to help controlling tasks. The correlated measurements of 

a process may cause high false alarm rates in an SPC 

application. When SPC chart possesses a high false alarm 

rate, a plotted point which is fallen outside the control 

limits does not necessarily imply that the process is 

unstable. Consequentially, the SPC signal may be 

misjudged the status of the underlying process. 

Unfortunate the correlated measurements often exist in 

practical processes [2]-[11]. EPC is able to effectively 

tune the correlated process, and it can be used to 

overcome the correlation difficulty. However, the use of 

EPC could cause the problem of embed underlying 

disturbance patterns.  

Because of its easy use and powerful classification 

capability, Artificial Neural Network (ANN) has been 

widely used in many practical applications. Also, ANN is 

a powerful data-driven and a self-adaptive computational 

tool which possesses the capability of capturing nonlinear 

and complex characteristics of a manufacturing process 

with a high degree of accuracy. Therefore, this study 

employs ANN technique to serve as the classifier for 

identify the mixture CCPs of an SPC-EPC system.  

The rest of this paper is structured as follows. Section 

2 addresses the structure of an SPC/EPC system and 

describes the difficulties for controlling the auto 

correlated process. The concept of the proposed ANN 

approach is discussed in Section 3. The experimental 

results and discussions are given in Section 4. The final 

section concludes this study. 

II. THE MODELS 

The commonly used integrated moving average with 

order of 1 (i.e., IMA (1, 1)) is considered to be the 

process noise in this study. Additionally, this study 

assumes that the manufacturing process can be described 

by a zero order model with the IMA (1, 1) noise; that is: 

[7], [9]: 
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Yt+1: the process measurement at time t+1 

dt+1: the noise at time t+1, and it is represented by an 

IMA(1,1) process,  

 : the parameter of an IMA(1,1) process, 

Xt: manipulated variable's value at time t, 

q: the system gain, and it is a parameter, and 

B: backward shift operator, and it is defined as: 

jt

j

t YBY  for j=1, 2, 

Giving the process model in Equation (1), a suitable 

EPC is usually employed as follows [7]: 
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Typically, the disturbances may interrupt the process at 

any time. When a disturbance has occurred, the process 

can be reformulated as follows. 

111   tttt DdqXY                        (3) 

where Dt+1 is a certain disturbance at time t+1.  

In this study, we consider three types of individual 

disturbances for a process, and they are described as 

follows [12], [13]. 
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SYS
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t
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Mixture: Dt+1= D
MIX
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where 

DSYSt: systematic disturbance value at time t, 

g: magnitude of  the systematic  pattern  in terms  of, 

and it is assumed to follow a uniform distribution with 

the range of (1.0, 3.0), 

DCYCt: cycle disturbance value at time t, 

Ut: cycle amplitude, and it is assumed to follow a 

uniform distribution with the range of (1.5, 2.5), 
 : cycle period, and it is assumed  =8. 

DMIXt: mixture type of systematic and cycle 

disturbance value at time t. 

Fig. 1 shows the patter of systematic disturbance in a 

process. In Fig. 1, the first 50 observations were 

generated from an in control state of a process, and a 

systematic disturbance was intruded into the process after 

observation 51. Fig. 2 shows the corresponding EPC 

actions which were described in Eq. (2).  

Fig. 3 displays the pattern of a cycle disturbance in a 

process. Same as in Figure, the first 50 observations in 

Fig. 3 were generated from an in control state, the 

observations 51 to 200 were generated from an out-of-

control state which had a cycle disturbances. Fig. 4 shows 

the corresponding EPC actions which were used to tune 

the cycle disturbance.  

Fig. 5 shows the pattern of a mixture types of 

systematic and cycle disturbances. That is, in Fig. 5, the 

first 50 observations were generated from an in control 

state and the observations 51 to 200 were from the 

mixture of systematic and cycle disturbance. Fig. 6 

demonstrates the corresponding EPC actions which were 

used to tune the mixture type of the disturbance. 

By observing the Fig. 1, 3 and 5, one can notice that 

the classification of those disturbance patterns is very 

difficult. Accordingly, the issue of classification of CCPs 

for an SPC-EPC system becomes a promising research 

topic. 

 

Figure 1.  The process outputs with the presence of a systematic 
disturbance after time 50. 

 

Figure 2.  The values of EPC with the presence of a systematic 
disturbance after time 50. 

 

Figure 3.  The process outputs with the presence of a cycle disturbance 
after time 50. 

 

Figure 4.  The values of EPC with the presence of a cycle disturbance 
after time 50. 
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Figure 5.  The process outputs with the presence of a mixture type of 
systematic and cycle disturbance after time 50. 

 

Figure 6.  The values of EPC with the presence of a mixture type of 
systematic and cycle disturbance after time 50. 

III. ARTIFICIAL NEURAL NETWORK 

A neural network is a massively parallel system 

comprised of highly interconnected, interacting 

processing elements based on neurobiological models. 

Due to its associated memory characteristic and its 

generalization capability, ANN has been increasingly 

utilized for modeling non-stationary processes [14]-[21]. 

ANN is a massively parallel system comprised of highly 

interconnected, interacting processing elements, or units 

that are based on neurobiological models. ANNs process 

information through the interactions of a large number of 

simple processing elements or units, also known as 

neurons. Knowledge is not stored within individual 

processing units, but is represented by the strength 

between units [14].  

The ANN nodes can be divided into three layers: the 

input layer, the output layer, and one or more hidden 

layers. The nodes in the input layer receive input signals 

from an external source and the nodes in the output layer 

provide the target output signals. The output of each 

neuron in the input layer is the same as the input to that 

neuron. For each neuron j in the hidden layer and neuron 

k in the output layer, the net inputs are given by [22] 

and  ,    
i

ijij ownet
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where i (j) is a neuron in the previous layer, oi (oj) is the 

output of node i (j) and wji (wkj) is the connection weight 

from neuron i (j) to neuron j (k). The neuron outputs are 

given by  
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where netj (netk) is the input signal from the external 

source to the node j (k) in the input layer and )( kj   is a 

bias. The transformation function shown in Equations (8) 

and (9) is called sigmoid function and is the one most 

commonly utilized to date. Consequently, sigmoid 

function is used in this study. 

The generalized delta rule is the conventional 

technique used to derive the connection weights of the 

feedforward network. Initially, a set of random numbers 

is assigned to the connection weights. Then for a 

presentation of a pattern p with target output vector 

tp=[tp1, tp2, ..., tpM ]T, the sum of squared error to be 

minimized is given by 


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where M is the number of output nodes. By minimizing 

the error Ep using the technique of gradient descent, the 

connection weights can be updated by using the 

following equations:  

)1()(  pwopw jipjpjji               (11) 

where for output nodes 

)1()( pjpjpjpjpj ooot                     (12) 

and for other nodes 

)1()(( pjpj

k

kjpkpj oow                   (13) 

Note that the learning rate affects the network's 

generalization and the learning speed to a great extent. 

The input to the ANN is the values of the process 

outputs. The ANN output consists of one node. This 

output node indicates the classification of the process 

status. The value of 0 concludes that the process is in 

control, and the value of 1 indicates that the process is 

out-of-control.  

IV. SIMULATION RESULTS AND DISCUSSION 

Suppose a manufacturing process is monitored by the 

SPC-EPC mechanism. This process can be represented by 

Eq. (3), and the process parameters are arbitrarily chosen 

as q=0.5 and 0.8  . Also, we assume that the process is 

tuned with the use of EPC control action which is 

represented by Eq. (2).  

In order to show the performance of ANN approach, 

this study performs a series of computer simulations. This 

study assumes that a systematic disturbances initially 

intruded alone in the process in a certain period of time, 

then a cycle disturbance intruded alone in the process in 

another period of time. Finally, the mixture type of 

systematic and cycle disturbance started upsetting the 

process. This study employs the ANN approach to 

classify those three kinds of disturbances; that is, the 

Journal of Industrial and Intelligent Information Vol. 4, No. 4, July 2016

254© 2016 Journal of Industrial and Intelligent Information



  

systematic disturbance, cycle disturbance and mixture 

type of systematic and cycle disturbance. 

This study uses 2100 and 900 data vectors for the 

training and testing phases. The first 700 training data 

vectors are generated from the presence of systematic 

disturbance alone; the data vectors from 701 and 1400 are 

generated from the presence of cycle disturbance alone, 

and the last 700 data vectors are generated from the 

mixture type of systematic and cycle disturbance. The 

testing data structure is same as the training data structure. 

The first 300 data vectors are involved with systematic 

disturbance alone, the data vectors from 401 and 600 are 

involved with cycle disturbance alone, and the last 300 

data vectors are involved with the mixture type of 

systematic and cycle disturbance.  

For ANN designs, this study uses the notation, {ni-nh-

no} to represents the number of neurons in the input layer, 

number of neurons in the hidden layer and number of 

neurons in the output layer, respectively. The inputs 

nodes of the ANN classifiers contain the EPC action (X) 

and process outputs (Y). The output contains one node, Z. 

This node represents the prediction of the process status. 

The values of 1, 2, and 0 represent that the underlying 

disturbance is systematic, cycle, or mixture type, 

respectively. The learning rate is set to be either one of 

the two typical values, 0.01 or 0.001. 

After performing the ANN classification tasks, we 

obtain the results which are shown in Table I. In Table I, 

the first column indicates that the disturbance types 

which we want to correctly classify. The second column 

of Table I is the parameter setting for the ANN classifier, 

and the corresponding accurate classification rate (ACR) 

are displayed in the third column. 

Observing Table I, we can see that the values of ACR 

are 100%, 97.6% and 90.3% for systematic, cycle and 

mixture type, respectively. The corresponding parameter 

settings are all {2-5-1}. 

TABLE I. ACR FOR THREE KINDS OF DISTURBANCES 

Disturbance type 
Parameters 
{ni-nh-no} 

ACR 

SYS {2-5-1} 100% 

CYC {2-5-1} 97.6% 

Mixture of 
SYS-CYC 

{2-5-1} 90.3% 

V. CONCLUSION 

An integrated SPC-EPC mechanism is a good 

approach to monitor a manufacturing process. However, 

because EPC would compensate the underlying 

disturbances, the CCPs are difficult to be classified. 

This study proposes the ANN approach to classify 

three kinds of process disturbances. The performance of 

the proposed ANN approach is confirmed through a 

series of computer simulations. The proposed ANN 

approach is simple to use and effective in categorizing the 

mixture type of disturbance patterns. In this study, we 

only consider the systematic, cycle and their mixture type 

of disturbances, an attempt to classify more mixture type 

of disturbances should be a valuable contribution to the 

future research. Also, the use of other machine learning 

classifiers, such as support vector machine and random 

forest, could be employed to classify the disturbance 

patterns for a multivariate SPC/EPC system. 
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