
 

 

 
 

 

Abstract—Traditionally statistical process control (SPC) is 

used for online process quality monitoring, while 

engineering process control (EPC) is designed for system 

auto-regulation for a given output target against the system 

disturbance. This paper presents the research work of the 

integration of SPC, EPC, and pattern recognition of 

Artificial Neural Network (ANN) for system process 

monitoring, fault diagnosis, and automatic system control. 

ANN module serves as a pattern reorganizer of SPC chart 

outputs for fault diagnosis, and also the regulation 

controller for system automation. The proposed 

methodology provides an integrated online process of 

monitoring & regulation for effective process quality control. 

This paper develops the framework and the structure of the 

integration of SPC, EPC, and ANN with fault-diagnosis and 

controller functions. The integration scheme demonstrates 

the ability of non-random fault auto-recognition from SPC 

charts and being an effective way to maintain target output 

by coupling with the automatic control and regulation of the 

process. A three-tank nonlinear system analysis for fault-

diagnosis is illustrated as an example of using this developed 

methodology.  

 

Index Terms—SPC, EPC, ANN, quality control, fault 

diagnosis, intelligence 

 

I. INTRODUCTION 

In production systems, statistically unstable 

manufacturing processes can lead to poor product quality 

that will significantly affect customers’ satisfaction and 

companies’ goodwill. A good process control is therefore 

an essential methodology for corporations to achieve 

stable product quality. Statistical Process Control (SPC) 

and Engineering Process Control (EPC), which have been 

used in quality improvement for decades, are the most 

effective tools of process control for quality. These two 

methods focus on different quality strategies.  EPC gives 

sequential adjustments in order to control the quality 

characteristic of interest without finding the assignable 

causes [1]. The main goal of EPC is to compensate the 

effect of inertia and disturbance in the process and to 

keep the process output on a desired target. EPC are often 

seen in applications in the chemical industry, where 
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variation is highly auto-correlated. The benefits of using 

EPC can be concluded as follows [2], [3]. 

(1) EPC technology is an effective way to reduce the 

variation of the products for production quality 

improvement.  

(2) EPC enhances plant quality production rate with 

minimum input and cost. 

(3) EPC controller can be simple and adaptive to a 

production process and a changing environment.    

EPC focuses on process regulation that assumes there 

are other manipulatable variables that can be adjusted to 

compensate for the drift of the process output and keep 

the output of the process close to the desired target. It 

makes no attempt to identify and remove the causes that 

impact and divert the process output from the target. 

However, the regulation capability of EPC (from the 

controller) is not unlimited. When the disturbance to the 

process is beyond a certain range, EPC (controller) alone 

is not able to stop the system output diverting from the 

target (system will be unstable in terms of system control 

engineering). Hence it is proposed to have a strategy of 

integration of EPS and SPC by applying SPC to detect 

non-random patterns which cause the abnormal 

disturbance to the process. As soon as the type of non-

random patterns is identified by SPC, the corresponding 

root causes should be removed (by process engineers) 

and the process brought back to a statistical-stable 

condition. Therefore, SPC is used to detect the existence 

of an assignable cause that makes the process out of 

statistical process control. SPC works to achieve product 

quality by monitoring whether the process is statistically 

stable by sampling and analysis of data [2]. SPC tools, 

such as control charts, are used to monitor the stability of 

process mean and/or process variation by measuring the 

product quality characteristics of interest. SPC has a long 

history of worldwide popularity because of the following 

benefits [1].  

(1) SPC is a simple, but effective methodology for 

online quality monitoring. 

(2) SPC in a good design can be used to prevent 

defects throughout the process. 

(3) SPC provides quality information for diagnosis and 

prognosis for decision making; SPC also provides process 

capability information.  
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The prime idea of the integration of SPC and EPC is to 

use the function of SPC to monitor and find the 

assignable cause that resulted in the system being 

statistically unstable and to use the function of EPC for 

process automatic control (feedback control) for the 

reduction of the process variability. This type of 

integration system with SPC and EPC has been studied as 

an algorithmic SPC system [4]. 

II. SPC AND ANN PATTERN RECOGNITION  

SPC control charts can be applied in four main fields: 

process monitoring, planning, evaluating customer 

satisfaction, and forecasting [5], [6]. Statistical Process 

Control charts are technology that displays a graphical 

line to monitor whether a manufacturing process is in a 

statistical control. A sequence of data is measured from 

the samples and is plotted on the graph versus the 

subgroup number or time. The charts contain central line, 

upper control limit, and lower control limit. The central 

line represents the average value of the sample. The 

upper and lower control limits form a zone where the 

sample data and the process are in-control. Otherwise, if 

one or more points are plotted out of the zone, the process 

is out of control and then corrective actions are required 

to find causes responsible for this unstable behavior. 

Multiple standard deviation (k) from the center line ( ) 

of the process decide the distance of two control limits 

from central line ( ).  
Statistical process control charts and Artificial Neural 

Network (ANN) are two powerful tools for process 

control and intelligent learning. There are numerous 

publications and research results introducing ANN [4], 

[7]. and SPC and their applications [1], [8]-[11]. Among 

them, H. B. Hwarng et. al. [12], D. T. Pham et al. [13], C. 

S. Cheng [14], and R. S. Guh [15] conducted the research 

with establishing automatic on-line SPC with 

combination of ANN for continuous improvement of 

quality and real-time manufacturing process control. The 

main idea of applying ANNs to SPC is to obtain the 

function of auto-interpretation of patterns of SPC control 

chart online [16]. 

Pattern Recognition (PR) plays the essential role in 

characterization of patterns in deviated data. PR 

procedure involves three processing levels [17]: filtering, 

feature extraction, and classification. Artificial Neural 

Network (ANN) is one of the most popular pattern 

recognition tools in industrial applications, which has the 

advantages of self-organization, simple computational 

operations, and parallelity.  

A. Engineering Process Control  

Engineering Process Control (EPC) focuses on process 

adjustment, which aims to detect whether processes 

output has deviated, or is deviating, and to take proper 

counteraction with input, then make the output response 

back to the target value. The deviation of process occurs 

due to phenomena such as continuous variation in input 

materials, effects of environmental covariates, process 

variables, or unknown forces that impact the process. In 

the past, process control device played the role in 

adjusting manipulated variables; however, it demands 

that all actions of sensing, measurement, comparison, and 

correction are embedded in the device hardware.  In order 

to eliminate hardware cost, some automatic means are 

utilized based on quantitative models of different 

operational strategies, including discrete-time control, 

PID control, artificial neural network, expert systems, etc. 

These various forms of feedback control schemes are 

used for making the required compensation in the control 

level in order to offset the output deviation.  

The primary task of EPC is for devising algorithms to 

manipulate the adjustable process variables in order to 

reach the desired process behaviour, namely, output 

values close to pre-set target values [18]. The EPC 

controller measures one or more of the process conditions 

which provide an automatic counteraction to any change 

in the condition in order to maintain a balanced state, or 

called steady state, which is defined as “a characteristic 

of a condition such as a value, rate, periodicity, or 

amplitude exhibiting only negligible change, over an 

arbitrary long period of time” (Instrument Society of 

America Standard on Process Instrumentation).  

B. Integration of SPC and EPC 

The concept of combining SPC with EPC has been 

introduced by many studies. The purpose of this 

technique is not only monitoring assignable causes in a 

system quality control but also reducing the effect of 

inertia on predictable quality variables. SPC reduces the 

variability of the output by detecting and eliminating the 

assignable causes in the process. EPC reduces the output 

variability by adjusting one or more controllable inputs. 

SPC and EPC integration can provide more system 

improvement by decreasing the variability, where EPC is 

used to reduce the effect of quality variations, while the 

purpose of SPC to detect assignable causes for this 

variation by statistical process monitoring. To this end, 

control chart can be applied on the error that is the 

difference between the actual system output (yt) and the 

desired system target (T). It is possible also to apply 

control charts to the adjustable variable (xt) that contain 

information for engineers to use in monitoring processes. 

The objective of this paper is to design SPC and EPC 

integration system that uses ANN as controller and 

classifier to control the process, to detect the abnormal 

disturbance, and to classify the type of disturbance. In 

EPC, the system may detect ‘output’ diverting from target, 

but there no further information on which and what type 

of the disturbance. For more information on 

‘disturbance,’ a feed-forward control scheme is adopted. 

First, when a certain output signal comes out from the 

system, the ANN controller automatically compares it 

with the target that has been predetermined. Then the 

controller starts to adjust manipulated and manage to 

keep the system actual output close to the target. 

However, when assignable causes appear in the system, 

those make the output deviates from the target and the 

controller cannot bring it back to the normal. The detailed 

system structure is illustrated in Fig. 1. 
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Figure 1.  The concept of combining SPC and EPC. 

III. SPC/EPC INTEGRATION: THREE-TANK SYSTEM 

CASE STUDY 

A three-tank system is used to simulate the idea of 

integration SPC and EPC. Three-tank system can be 

considered as the most used prototype while liquid level 

control system has a tremendous application field in 

industry. It is applied in the wastewater treatment plant, 

the petro chemical plant, and oil/gas systems. The scheme 

of the system is shown in Fig. 2 [11]. It is composed of 

three cylindrical tanks connected via valves. Each Tank 1 

and Tank 3 has one outlet while Tank 2 has two outlets. 

Water is fed from the bottom basin into Tank1 and Tank 

2 by Pump 1 and Pump 2. The manipulable control inputs 

are x1(t) and x2(t), and the outputs are the water levels in 

each tank, y1(t), y2(t), and y3(t) respectively. The 

differential equations for the system dynamics are shown 

as follows [19]   
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where   

)(13 tq  is the flow between Tank 1 & Tank 3 given by  

31113 )( yyptq   

)(32 tq  is the flow between the Tank 2 & Tank 3 given 

by 
23232 )( yyptq   

)(20 tq  is the flow between two outlets of Tank 2 

given by 
2320 )( yptq   

)(1 tq  is the flow into Tank 1, given by 
141 )( xptq   

)(2 tq  is the flow into Tank 2 given by 
252 )( xptq   

321 ,, ppp  are valve constants and 
54 , pp are pump 

constants. 

Therefore, the model can be detailed, with system 

input and output variables, as: 
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             (4) 

The dynamics of the system can be simulated and 

studied by Simulink [21] directly. 

 

Figure 2.  Three-tank system 

EPC control scheme with adaptive control (Fig. 3), 

using Artificial Neural Network (ANN), consists of three 

elements. They are the plant, the neural network identifier, 

and the neural network controller. The difference 

between the outputs from the plant and the outputs from 

the identifier, the error, will be used to adjust the weights 

of the neural network. Then the controller sends the 

predictive signal back to the plant and the neural network 
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identifier for the next step of weight update adaptively. 

Feed forward neural networks are used to build the 

inverse and the direct models. Input and outputs data sets 

are simulated using the three tank system to build both 

inverse and direct models. Training and validation 

datasets are produced to appropriately design these 

models.  The inverse model is connected in series with 

the system, and a direct model is placed in parallel with 

plant. 

To study the combination of EPC/SPC controls and 

ANN system controller for quality, the dynamics and 

control of three-tank system are simulated in Simulink 

using controller blocks. Multilayer perceptron (MLP) 

neural network is selected, which is commonly used for 

modelling nonlinear systems and implementing general-

purpose of non-linear controller [20], as both neural 

network controller and the neural network identifier in 

the system. The control scheme of three-tank system with 

neural network identifier and controller in Simulink is 

presented in Fig. 3 [21].  

To study the system dynamics and the function of the 

combination of EPC/SPC, different kinds of source 

blocks in Simulink are used to generate the desired target 

signals and to change the target value in a specified time 

horizon. Source blocks are also used to generate 

(simulated) disturbances for the system in order to be 

detected by ANN pattern recognizer [22]. After building 

the control charts using the error signal between the 

desired output and the target, ANN pattern recognizer is 

adopted for control charts classification. Different types 

of disturbances to the system can be produced by a single 

block or multiple blocks. The pattern recognizer from 

SPC in the system has been well-trained for 7 different 

types of random and non-random control chart patterns. 

These control chart patterns are defined in Besterfield 

(2013) [23] according to Western Electric Handbook. All 

patterns are illustrated in Fig. 4. 

 

 

Figure 3.  Principle of NN adaptive controller system 

 
(a)  Random (normal) pattern 

 
(b) Upward shift 

 
(c) Downward shift 

 
(d) Upward trend 
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(e) Downward trend 

 
(f) Cyclic trend 

Figure 4.  Common patterns of control chart in SPC: (a) Random (normal) patter; (b) Upward shift; (c) Downward shift; (d) Upward trend; (e) 
Upward shift;  (f) Cyclic trend 

 

ANN pattern recognizer is also pre-trained using the 

simulated control charts in different types, then this 

recognizer is connected to classify different types of 

control chart generated using the error signal between the 

output and the desired reference. Different error signals 

may result depending on the simulated (added) 

disturbance to the system. By correlating the classified 

control chart type and the disturbance type, control action 

will be determined by the controller.   

Table I illustrates the formulas and parameter of seven 

control chart patterns [24]. In order to avoid over-fitting, 

the total 1050 input-output vector-pairs data for each 

generated sample are divided into three subsets. The first 

subset, including 700 available data points, is used for 

training process, which computes the gradient, update 

weights and bias of the network. The second subset, 

including 175 available data points, is used for validation 

process, which is used to monitor the performance of the 

network during the training process. The third subset, 

including 175 data points, is used for testing process, 

which is used to test the trained network and to verify the 

performance during training. 

TABLE I.  FORMULAS AND PARAMETERS OF SEVEN CONTROL CHART PATTERNS 

 
 

After the ANN control chart pattern recognizer is 

established and well-trained, it starts to detect the output 

signals which are simulated from ANN controller, then 

compare those under different conditions. 

Backpropagation (BP) training algorithm is chosen as 

primary training algorithm to develop the proposed ANN-
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based control chart pattern recognizer. At the beginning 

of the network construction, it is divided into two 

categories based on different number of hidden layers, 

one and two hidden layer structures. These two structures 

are used with various number of hidden layer neurons. 

For one hidden layer structure, the number of neuron is 

categorized as multiples of tens, i.e. 10, 20, 30, 40, and 

50. For the two hidden layer topology, the node number 

is set to be the same as the one hidden layer topology. 

The node number of the first hidden layer is either 

equivalent or larger than that of the second hidden layer. 

Therefore, different (backpropagation network) BPN 

structures are established. Four learning algorithms, 

Resilient Backpropagation (RBP), Scaled Conjugate 

Gradient (SCG), Conjugate Gradient Backpropagation 

(CGB), and Gradient Descent Backpropagation (GDB) 

are utilized for each BPN to learn on training pairs.  

Sigmoid and linear activation functions are used for 

neural network node-function. Sigmoid function is given 

by 

ae
af




1

1
)( , bWPa                      (5) 

where W is the weight matrix, P is the input matrix and b 

is the bias.  

Mean Squared Error (MSE) is selected to measure the 

performance and control for BPN training. Four different 

learning algorithms are tested with designed data sets. By 

looking at different training results, RBP performs a 

much better classification accuracy than other three 

algorithms. In neural network structure design, taking a 

comparison of different number of hidden layer neurons 

in the model with RBP training algorithm and sigmoid 

transfer function, the 30-30-7 produces the highest 

average classification accuracy, over 92% shown as 

Table II. Different sampling data points (window size) 

are used to get higher accuracy.  

TABLE II.  BACKPROPAGATION PERFORMANCE ON VARIOUS WINDOW 

SIZE 

 
 

Different disturbances (noise) are simulated and added 

to the system to determine the ability of the control chart 

classifier to rule out these signals. Control charts are built 

using error signals, which is the difference between target 

and the outputs of the three tank system after adding 

these noise signals. After determining ANN parameters, 

including different sizes of window, training algorithms, 

transfer functions, number nodes of hidden layers, and 

number of hidden layers. The classifier starts to detect the 

simulated data from different noise functions. These 

functions are generated using Simulink. The classification 

accuracy is shown in Table III. Accuracy is calculated by 

dividing the number of the correctly classified control 

charts by the overall number. Results show that no matter 

what functions are used, including single or combined 

functions, the ANN classifier can accurately detect the 

different disturbances, over 91% respectively.  

TABLE III.  BACKPROPAGATION PERFORMANCE ON THE AVERAGE OF 

THE SIMULATED DATA FROM DIFFERENT NOISE FUNCTIONS (%) 

 

IV. SUMMARY AND CONCLUSION 

Disturbances and assignable causes in manufacturing 

process can result in the deviation of output quality from 

the desired target even if adaptive controllers are used.  

The trend of deviated data can be classified as one of 

several non-random patterns in a view of statistical 

process control charts. An effective identification of these 

non-random control chart patterns can greatly narrow 

down the possible disturbances to be investigated, and 

significantly reduce the time for diagnosis of unexpected 

process deviation. Therefore, to establish an integrated 

process control system with a combination of on-line 

automatic control (EPC) and disturbance/assignable cause 

detection (SPC) is necessary. Artificial neural networks 

possess a great capability to deal with both on-line signal 

adjustment and control chart pattern recognition/analysis. 

The objective of this research is to develop an integrated 

control system which contains two ANN neural network 

based software prototype sub-systems, ANN adaptive 

controller and ANN pattern recognizer. For ANN 

adaptive controller scheme, the inverse neural model 

connected with the parallel framework of the original 

neural and the plant model are used. For ANN pattern 

recognizer, many trials based on back-propagation 

network are well-trained by plenty of representative 

training data and a comparative study on the trails based 

on different sizes of window (input time-lag number of 

signal), training algorithms, transfer functions, number 

nodes of hidden layers, and number of hidden layers 

(ANN structure design and training). The result shows 

that a single-layer BPN with 30 neurons in hidden layer, 

RBP learning, and sigmoid transfer function is capable of 

producing satisfactory classification accuracy over 92%. 

Using multiple hidden layer BPN seems not capable of 

outperform the single layer significantly. Finally, the 

ANN classifier starts to detect the signals which are 
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simulated by different function blocks from Simulink. 

Error signals (difference between output and target) are 

used to build control chart. The result shows that the 

classifier performs excellent accuracy in detecting 

disturbances through classifying these charts, over 91%. 
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