A New Approach for Managing Outages at Hydro Power Plants Using Dependency Structure Matrix

Magnus Thor Jonsson
Dept. of Mech. Eng., UI, Reykjavik, Iceland
Email: magnusj@hi.is

Abstract—This article proposes a new approach for managing overhaul and planned outages at hydro power plants. The dependency between tasks or the information flow between activities is formulated in a structural matrix with the objective to minimize the total completion time and the cost. The method is used to examine the planning process of a twelve years overhaul at one of Landsvirkjun’s hydro power units. Using the Dependency Structure Matrix (DSM) to optimize the order of activities shows improvements in the overhaul operational plan. The quality of data, including the breakdown of activities into tasks having a reasonable granularity and the relationships of these tasks being known is the main premises for a successful use of the DSM methodology.

Index Terms—maintenance, overhaul, outage, scheduling, dependency structure matrix

I. INTRODUCTION

Iceland generates 99% of its energy from hydroelectric and geothermal sources and Landsvirkjun, a power company in Iceland, operates 16 power stations all over the country. Installed capacity is 2.1 GW produced by 38 hydro turbines and 5 steam turbines. At Landsvirkjun, preventive maintenance is planned as a comprehensive overhaul every 12 years. The outages process is both costly and time consuming due to its number of activities, equipment, spare parts, teams or staff with different skills and experience, and the dependency relationship between tasks and activities.

This paper describes a novel approach for designing a work and operational plan for a 12 years overhaul of a hydro turbine for Landsvirkjun based on Dependency Structure Matrix (DSM). Conventional project management tools like Gantt charts, CPM and PERT are often used for planning overhaul projects by graphic representations of task flows. These tools can model both dependent and independent tasks in time but are not used to analyze the dependency between tasks or the information flow between activities. In this paper, the dependency of activities and the information flow is used to schedule jobs with the objective to minimize the total completion time and the total cost. Large part of the overhaul work is to examine the condition of the mechanical and the electrical elements. This examination can highlight faults in some components requiring management of new activities. Due to dependences and relations between activities, the approach discussed in this paper uses Dependency Structure Matrix (DSM) in order to minimize the total outages time and the overhaul cost.

Maintenance management has been the subject of many articles during the last decades, where thorough discussion on maintenance optimization models, maintenance techniques, scheduling, performance models, information systems and policies can be found [1]. The maintenance techniques can be classified as preventive maintenance, condition based, total productivity (TPM), reliability centered (RCM), computerized management systems (CMMS), predictive maintenance, outsourcing, effectiveness centered maintenance, and strategic and risk based maintenance [2]. Many different approaches for measuring maintenance performance have also been discussed in various papers [3]. Maintenance scheduling is another interesting area that needs more investigation [4]. The stochastic nature of the maintenance work makes it a challenging problem and distinguishes with production scheduling.

The Design or Dependency Structure Matrix (DSM) methodology is widely known and has been used to handle dependences and relations between activities for large design projects. It’s a compact, matrix representation of a project and it has been used for representing and analyzing information flow as well as to analyze development projects modeled at the task level. The method was originally developed by Donald V. Steward in 1981 [5] but it was not until in the 1990s that it received wide spread attention, due to MIT’s research in the design process modeling arena [6].

The Dependency Structure Matrix is described in section 2. In section 3, the maintenance procedure for a hydro turbine power unit is explained and the results are presented in section 4. The paper concludes with a general discussion and a summary.

II. DEPENDENCY STRUCTURE MATRIX

Managing hydro turbine overhauls involves a determination of many interdependent activities which together define a project plan. The precedence order of the tasks and the information flow between these activities require coupling because some of the tasks can not be determined unless information from other tasks are first known or assumed. Conventional planning
techniques do not handle the circuits inherent in the project planning but the Dependnecy Structure Matrix (DSM) is a useful tool to develop an effective project plan showing how these iterations are handled, where estimates are to be used as well as showing the information flow during the work.

The matrix contains a list of all constituent activities and the corresponding information exchange patterns. In a DSM model, each project task is defined by a row of a matrix and a corresponding identically ordered column. The task's dependencies are represented by placing marks in that particular row in the corresponding columns to indicate the other tasks (columns) on which it depends. Therefore, reading across a row for a specific task reveals all of the tasks whose output is required to perform the task corresponding to that row. Similarly, reading down a column reveals which tasks receive information from the task in that column. Fig. 1 shows an example of a DSM with sequential, parallel and coupled tasks.

The design structure matrix in Fig. 1 shows two marks in row D; in column B and column C. Thus, according to the matrix the output or information from tasks B and C is required to perform task D. Then, task A transfers information to tasks E and F since column A has marks in those rows. The matrix in Fig. 2, shows three basic building blocks for describing the relationship among the tasks: parallel (or concurrent), sequential (or dependent) and coupled (or interdependent).

In order to improve the maintenance process, the activities in the matrix are reordered and the same reordering is made of the rows and columns. The objective is to reorder the activities so that the matrix is lower triangular, i.e., all marks are either on or below the diagonal. Then, proceeding in this order, the activities could be determined one at a time. As each activity is determined, all its required predecessors would be to the left of the diagonal and thus already known. The following algorithm can be used to sequence the tasks [6]:

- All empty rows are moved to the top.
- All empty columns are moved to the end.
- All loops are collapsed and scheduled as above.
- Steps 1-3 are repeated until all tasks and loops are sequenced.

This kind of reordering is unfortunately rarely possible due to the coupling of activities. However, the tasks can be reordereed by a process known as partitioning, so as to confine the marks in the matrix to appear either below the diagonal or within square blocks on the diagonal. All the tasks that occur in a circuit will then be found in the same block and the blocks represent all the smallest sets of tasks that must be determined jointly.

Once the blocks are found, they are sequenced by the following algorithm [7]:

- A block which no variable has a predecessor in another unnumbered block is found.
- The block is assigned the next number.
- Points 1) and 2) are repeated until all blocks are numbered.

This process is used to order the blocks but the relative ordering of the variables within each block is arbitrary. The order of the activities affects the marks, which are above the diagonal and show where estimates are required to start an iteration. A process known as tearing can be used to choose a set of marks representing where estimates might be made, to obtain an ordering so that the marks represent reasonable estimates. Then, when having made these estimates, no additional estimates should need to be made [8]. Thus, when marks that have been chosen from the block have been removed and the block has been reordered by partitioning, no marks should appear above the diagonal. Fig. 3 shows an example of tearing.
restored is called the torn block, and if the reduced block is lower triangular, the torn block has only tear marks above the diagonal. Thus, every circuit contains a mark that is torn and the reduced matrix has no circuit. When tearing, the first choice of marks to tear are the predecessors that already have been well estimated or can be poorly estimated without significantly affecting the variables they precede. The choices are given numbers where high numbers indicate the better places to tear and lower numbers indicate where estimates are harder to make. The marks with the highest level number are torn first, then the variables are reordered in the block by partitioning, and then the marks with the next higher level numbers are torn [9]. Once the estimates are made of how many times each block is to be iterated and how long the tasks are to take in each iteration, a critical path schedule can be developed [10]. The dependency structure matrix methodology provides therefore a preliminary analysis required before a critical path schedule for a maintenance process can be developed.

III. HYDRO TURBINES OVERHAULS AND OUTAGES

The first step in the overhauls and outages of hydro turbines is the management process. The outage is planned and each activity is scheduled. The DSM is here used as a managing tool for preliminary analysis. In this formulation the maintenance supervisor (P) is also a planner and a scheduler. The supervisor manages a group of staff and contractors with different skills and experiences. The group consists of mechanics (M), electricians (E), and workmen (W). The type of work that is preformed can be defined as, Planning (P), Controlling (C), Dismantling (D), Inspection (I), Cleaning (L), Testing (T), Repairing (R) and Reassembling (A) as shown in Table II. After the planning, scheduling and staffing process, the safety and environmental issues are considered.

TABLE I. MAINTENANCE UNITS AND ESTIMATED MAN-HOURS

<table>
<thead>
<tr>
<th>Maintenance units</th>
<th>Estimated-man-hour for 12 years overhaul</th>
<th>Planner</th>
<th>Mechanics</th>
<th>Electrician</th>
<th>Workman</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Process</td>
<td>33</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Water Intake System</td>
<td>10</td>
<td>75</td>
<td>70</td>
<td>23</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Water Outlet System</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Turbine System</td>
<td>8</td>
<td>75</td>
<td>75</td>
<td>32</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Draft System</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Shaft, Couplings, and Bearings</td>
<td>2</td>
<td>85</td>
<td>82</td>
<td>0</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>Governor System</td>
<td>2</td>
<td>77</td>
<td>59</td>
<td>0</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Hydro Generator</td>
<td>2</td>
<td>276</td>
<td>272</td>
<td>103</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td>Switchgears and Breakers</td>
<td>4</td>
<td>26</td>
<td>25</td>
<td>0</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Total (hours)</td>
<td>68</td>
<td>694</td>
<td>672</td>
<td>178</td>
<td>1655</td>
<td></td>
</tr>
<tr>
<td>Total (days)</td>
<td>9</td>
<td>87</td>
<td>84</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The planned overhaul usually begins with a visual inspection before the shutdown. First, the condition of the foundation, anchor bolts, piping, flanges and valves is examined. Also, before the dewatering process the leakage is checked at accessible areas, for example at the main valve, the penstock and the turbine. Then, the safety and environmental programs and standards are listed for each maintenance unit. The main units are shown in Fig. 4 and listed in Table I. For each unit, there are a number of tasks to perform and each task has a resource requirement as shown in Table II.

At the water intake for the power plant there is a trash rack and an inlet gate. The gate is used for cutting off the water supply to the turbine when the unit is shut-down and dewatering is required to permit access for maintenance of the connecting penstocks. The intake has a motor lifted, gravity lowered gate and valve, with an

Figure 4. Hydro power plant
automatic release operated by an excess flow device if a burst occurs in a pipe line. Main inlet valves at the turbine are opened by oil servomotor. The penstock and the inlet valve system are defined as the water conduit system. From the inlet valve the water flows in Francis turbines through the spiral case, stay vain and wicket gates to the runner. Governor is the speed/load control of the turbine and the main controller in which it adjusts, by guide vanes and wicket gate, the flow of water through the turbine to balance the input power with the load. From the runner, the water flows through the water draft system. The turbine is connected to the generator with a shaft that has one thrust bearing, two guide bearings on each side of the generator and the turbine bearing. The main parts of the generator are the stator, rotor and excitation system. From the generator, the electricity is transmitted through generator terminal and breakers to the unit transformer.

The dependencies rules are used as discussed in chapter II, to sequence the tasks and the activities. The activities are reordered by the following partitioning process:

- All empty rows are moved to the top.
- All empty columns are moved to the end.
- All loops are collapsed and scheduled as above.
- Steps 1-3 are repeated until all tasks and loops are sequenced.

Table IV, shows the dependency structure matrix after the partitioning process. At least four blocks need to be considered. The first block is the switchgear and the transformer system, the next one is the draft and the turbine system and then it is the water intake and the conduit system. The last block is the auxiliary, the hydro generator and the shaft bearings system.

The blocks are sequenced by the following algorithm:

- A block which no variable has a predecessor in another unnumbered block is found.
- The block is assigned the next number.
- Points 1) and 2) are repeated until all blocks are numbered.

By using tearing, the dependency structure matrix can be decoupled and solved or optimized separately. The main objective is to reduce the tasks above the diagonal and to reduce the distance from the diagonal to the tasks above it. The order of activities was changed as shown in Table V. The most notable changes are the connections of the four iteration blocks in the matrix. Tearing is preformed for six connections as shown with red circles in the table and the total distance for coupling of activities above the diagonal of the matrix is reduced. When the blocks are coupled, the efficiency of the maintenance team can be increased, reducing the total makespan of the work outages and shortening the outages.

A more detailed analysis of the dependency between tasks for each activity, as shown in Table II, was a base for this dependency structure analysis. However, the matrix is so large that only a matrix with main units is used, as shown in Table II.
V. CONCLUSION

This paper introduces a novel approach for designing a planning and a scheduling methodology using Dependency Structure Matrix (DSM). The method was successfully tested by scheduling a 12 years overhaul and outages for a hydro turbine at Landsvirkjun power plant in Iceland.

One of the premises for a successful use of the DSM methodology is that the data used is of high quality, i.e. the task breakdown has a reasonable granularity and that the relationships of these tasks is known with a high level of certainty. The data used to create the matrix for this project did not fully meet these requirements. Although a large part of the tasks have sufficient granularity and their relationships with other tasks is known, other tasks lack these important properties.

ACKNOWLEDGMENT

The author wishes to thank Landsvirkjun and Thrandur Rognvaldsson maintenance specialist for their contribution to this work.

REFERENCES


Magnus Thor Jonsson was born in Reykjavik 12th of March 1957. He has MSc. degree in Mechanical Engineering from University of Iceland, Department of Industrial and Mechanical Engineering from 1982 and a PhD. from Mechanical Department, Technical University of Norway in Trondheim from 1987. His major field of study was model based design using nonlinear FEM models.

He has worked as a Professor in mechanical engineering at the School of Engineering and Science, University of Iceland, placed in Reykjavik, from 1995. He has also worked as the Department Head of the Mechanical Engineering Department, and a Consultant Engineer at Fjarhitun Consulting Company in Iceland. He has published number of research papers in the field of model based optimization in maintenance and design of geothermal power plants.

Prof. Jonsson has been the chairman of Engineering Research Institute, University of Iceland, chairman of Continuing Education and the chairman of CAD, CAM and CAE Association in Iceland. He has also been the chairman of Machine Group of Icelandic Standards. He has been a board member of many steering committees as well at the University of Iceland and Icelandic associations such as the Icelandic Society of Engineers and IT&T User Forum. He is also a member of ASME.