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Abstract—Osteoporosis is a disease characterized by low 

bone mass and deterioration of the micro-architecture of the 

bone tissue, which lead to increased bone fragility and 

therefore, an increased risk of fracture. The purpose of this 

work is to quantify the porosity of radiographic bone images 

in order to characterize osteoporosis. Two methods are used 

to characterize radiographic bone images, lacunarity and 

star volume distribution. The first method is based on 

fractal analysis and the second on the evaluation of the bone 

medullar space. 2D bone radiographic images from two 

populations composed of 80 control subjects and 80 patients 

with osteoporotic fractures are analyzed. The results show a 

good discrimination between the two groups.  

 

Index Terms—bone mineral density, lacunarity, star volume 

osteoporosis, radiography 

 

I. INTRODUCTION 

If bone loss is unavoidable and normal with aging, 

when can we then talk about osteoporosis? The disease is 

defined as a bone fragility which results from a gradual 

decrease of bone density combined with a deterioration of 

the "architecture" of the bone. This disease affects a large 

part of the population from a certain age and promotes 

fractures. Therefore, prevention is the subject of 

numerous studies. If treatments exist, we do not know yet 

the diagnosis inexpensively. The bone becomes porous 

(hence the name osteoporosis) and more likely to break. 

Here we must emphasize the importance of these two 

processes - decreased bone density and deterioration of 

bone microarchitecture - in an adequate definition of 

osteoporosis. The assessment of these two processes 

would be a reliable diagnosis. However, the test used in 

the clinical routine is only based on the measurement of 

the bone density and doesn’t quantify the 

microarchitecture of the bone. In addition, bone density 

exam results, are interpreted in terms of an increased risk 

of fractures, the risk being confused with the disease 

itself. How to judge the porosity of bone using a 

radiographic image? For several years, many researchers 

considered models to describe irregular processes that 
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seem relevant. This irregularity is directly related to 

fractal objects. A fractal is defined as a mathematical set 

or physical system of irregular or fragmented shape that 

is created following deterministic or stochastic rules [1]. 

The measured parameter is the fractal dimension D.  

In recent years, fractal analysis of plain radiographs 

has been employed to assess the trabecular bone structure, 

but almost all these studies have been focused on the 

fractal dimension evaluated by different approaches 

(variance method, surface area, Fourier transformation, ...) 

[2] and [3], and just few works have been dedicated to 

lacunarity analysis [4] and [5]. The fractal dimension 

which is a function of the roughness of the texture, alone 

is not sufficient to differentiate bone textures. To get an 

efficient characterization, and quantify the degree of 

porosity of trabecular bone, the lacunarity can be a 

valuable adjunct. This later which is a second-order 

fractal metric is able to better characterize and provide 

information about the amount of “porosity” of structures 

in bone images [6]. 

Other methods exist for assessing bone architecture, in 

particular, stereological estimators. The star volume 

distribution (SVD) has been recognized as a good 

estimator to assess bone architecture [7]. The SVD is 

defined as the mean volume of all the parts of an object 

which can be seen unobscured in all directions from a 

particular point with the mean value taken over all points 

inside the object. It is defined for any type of objects 

including cavities like marrow space and networks like 

the trabecular system. 

A lot of work has been done to characterize the 

trabecular bone architecture. Buckland-Wrigh et al. [8] 

used high-definition macroradiography and fractal 

signature analysis to quantify the trabecular organization 

in lumber vertebrae and knee. They characterized 

architectural differences between groups of patients with 

low and high BMD. As part of a larger study, the 

Osteodent project, Geraets et al. [9] investigated if the 

trabecular pattern on dental radiographs can be used to 

predict BMD and to identify the subjects with 

osteoporosis and increased risk of osteoporotic fractures. 

Jennane et al. [10] presented a series of 3D skeleton-

based image processing techniques for evaluating the 
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micro-architecture of large scale disordered porous media. 

The proposed hybrid skeleton method combine curve and 

surface thinning methods with the help of an enhanced 

shape classification algorithm. Results on bone 

demonstrate the ability of the hybrid skeleton method to 

provide significant topological and morphological 

information. Harrar et al. [11] have developed and 

validated a new method to assess bone microarchitecture 

on radiographs. Taking into account the piecewise fractal 

nature of the data, a piecewise fractional Brownian 

motion was used to characterize the trabecular bone 

network. Based on the Whittle estimator, a new method 

for calculating the Hurst exponent H is developed to 

better consider the piecewise fractal nature of bone 

radiograph images. Their findings demonstrate that the 

new estimator proposed provides effective results in 

terms of discrimination of the subjects suffering from 

osteoporosis and is better adapted to bone radiograph 

image analysis.  

In this study, to quantify porosity, X-ray radiographic 

images taken at the calcaneus site are used. Lacunarity is 

used as a statistical method for texture analysis and the 

SVD as a structural method is used for the 

characterization of the bone architecture. The interest of 

this work is to compare the ability of the two methods to 

discriminate between two populations composed of 80 

healthy cases (CC) and 80 osteoporotic patients (OP).  

II. MATERIEL AND METHODS 

A. Subjects 

All the OP patients (fracture cases) and CC subjects 

voluntarily entered the study after written informed 

consent. Patients were systematically screened from all 

women attending the bone densitometry unit for routine 

clinical care. This study involved 160 women, 80 controls 

aged 68.93 ± 9.78 SD and 80 osteoporotic fracture cases 

aged 71.34 ± 10.55 SD. No significant difference was 

found for the age (p-value NS). All the patients filled out 

an osteoporosis risk questionnaire that included: age, 

personal and family history of fracture, menopausal status 

(time since menopause), use of hormone replacement 

therapy (HRT), other medication and other diseases 

(rheumatoid arthritis, etc.). 

B. Image Acquisition 

Images were obtained on calcaneus bone with a direct 

digital X-ray prototype (BMA™, D3A Medical Systems, 

Orleans, France) [12]. We used the calcaneus because of 

the limited soft tissues surrounding this bone. Soft tissues 

could increase the variability of the method. The study of 

the calcaneus seems relevant because it contains 90% of 

trabecular bone [2] and is a good predictive site of 

fracture in terms of bone mineral density [2]. The devices 

for the study were cross-calibrated. The cross-calibration 

procedure has been described in [13]. The same 

radiographic parameters were used for the prototypes. 

Focal distance was set at 1.15 m. The X-ray parameters 

were 55 kV and 20 mAs for all patients. Scanning the 

heel permitted the selection of a similar measurement site 

(ROI) for each subject by using anatomical landmarks as 

previously described in [12]. These anatomical landmarks 

were localized by the operator on the image, allowing 

positioning of the ROI (1.6 × 1.6 cm2) performed by the 

software device (Fig. 1). 

 
(a) 

              
(b)    (c) 

Figure 1.  ROI for texture analysis at the calcaneus with the two 
anatomical landmarks A and B (a), a CC image (b) and an OP image (c). 

During the acquisition, storage or scanning process of 

the images, a noise is generated, this affect the quality of 

the radiographic image. To improve the quality of the 

image, usually a filter is necessary. This will improve the 

high frequencies of the image that contain noises, without 

changing the low frequencies that are representative of 

the information content of the image, i.e. the trabeculae. 

An interesting filter in medical imaging is the nonlinear 

median filter, it works by moving through the image pixel 

by pixel, replacing each value with the median value of 

neighbouring pixels. The pattern of neighbours is called 

the "window", which slides, pixel by pixel over the entire 

image. The median value is calculated by first sorting all 

the pixel values from the window into numerical order, 

and then replacing the pixel being considered with the 

middle (median) pixel value. In our case, we used a filter 

size of 3x3. 

   
(a)   (b) 

Figure 2.  Binary images related to the previous ROIs. (a) CC binarized 

image, (b) OP binarized image. 

ROI images were first binarized using the algorithm 

described by White and Rudolph [14], which was used 

for measuring the morphologic features of the trabecular 

bone architecture. Each ROI image was first smoothed 

using a low-pass Gaussian filter (sigma = 21 pixels, 

kernel size = 10) to remove large-scale variations in the 
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image. The smoothed image was then subtracted from the 

original, and a 128-gray-level value was added to each 

pixel of the subtracted image. The resulting image was 

then binarized using a global threshold value of 128 (Fig. 

2) [14], which segmented the image into the bone (gray 

level of 255) and marrow (gray level of 0). Finally, an 

additional pruning step was applied to the resulting image 

to remove the residual small size artefacts (< 5 pixels). 

C. Lacunarity: Gliding-Box Algorithm 

In geometry, lacunarity (Λ) is a measure of how a 

fractal fills space. Lacuna means gap (more gaps = higher 

lacunarity). Authors have proposed various methods in 

the literature for calculating lacunarity [15]-[17]. In this 

study we have used the gliding-box method. The gliding-

box algorithm consists to sample an image using 

overlapping square windows of length ε. It is based on a 

localized mass calculation [1] and [16]; a unit box of size 

r is chosen and the number of set points, m, within the 

box (the mass) is counted. This procedure is then 

repeated, creating a distribution of box masses B(m, ε), 

where B is the number of boxes with m points and length 

side ε. This distribution is then converted into a 

probability distribution, P(m, ε), by dividing B(m, ε) by 

the total number of boxes N(ε) of size ε. The lacunarity at 

scale ε is defined by the mean-square deviation of the 

fluctuation of mass distribution probability P(m, ε) 

divided by its square mean. The Gliding-box lacunarity, 

ΛGB is then defined as:  
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An extended version of lacunarity and the gliding-box 

concept was introduced by Plotnick et al. [18] based on a 

random binary map (0 for empty and 1 for occupied): 
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where µ is the mean and σ
2
 is the variance of the number 

of occupied sites at scale r. Lacunarity can be compared 

independently of image density by normalizing (2) [15]: 
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where Λ
c
 is complementary lacunarity (obtained by 

calculating the lacunarity of the complement binary 

image). Λnorm is denoted below as Λ for convenience..  

D. Star Volume Distribution 

This method has been widely exploited for the 

measurement of porous materials, particularly cement and 

rock [7]. It is based on the study of medullary spaces: 

from any point in the marrow space, radii are projected in 

all directions of space. These radii stop when they meet 

trabeculae. The holl of these radii constitute a kind of 

“star”. The average size of the radii of the star gives an 

idea of the perforation of the bone trabecular tissue. The 

more the lengths of the radii are greater, the larger the 

network is disconnected (Fig. 3). 

The star volume )( *

.spacemV  is defined by: 

3

0

*

.
3

lV spacem


                            (4) 

where l0 is the mean length of the segments in all 

directions. 

 By analyzing the distribution of the medullary space, 

an indirect assessment of the organization of the 

trabecular network is obtained. Significant size of the 

segments gives a low trabecular connectivity. 

   
(a)                             (b) 

Figure 3.  Illustration of the concept of the SVD. (a) for a CC image, (b) 
for an OP image. 

Fig 3.b show large size of the star in osteoporotic 

patient compared to the healthy one (Fig 3.a), this reflects 

the loss in trabecular bone connectivity. 

To estimate the SVD, thresholding and surrounding the 

region of interest are needed in order to avoid detection 

of overflows of the boundaries of the image. 

For each pixel of the medullary space of the image, a 

scanning is performed in all directions, when a trabecula 

is found; the size of the segment corresponding to the 

angle (direction) is calculated. The operation is repeated 

for all angles (from 0° to 360°), the average size of the 

segments is calculated. Finally, the star volume 

corresponds to the mean of segment sizes for each pixel. 
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Figure 4.  Lacunarity curves of images of figure 1. 

III. RESULTS AND DISCUSSION 

A. Lacunarity Analysis 

An example of lacunarity applied on the ROIs of Fig. 1 

is shown for different box sizes ranging from 1 to 25 

pixels (Fig. 4). The OP image provides higher Lacunarity, 

due to significant presence of holes in the image, related 

to the loss of bone mass (Fig. 1b). Lower lacunarity is 
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observed for the CC image (Fig. 1a) due to a lower bone 

loss. As the size of boxes increases, the lacunarity 

deceases. For small sizes of boxes, lacunarity is high due 

to large holes. For larger sizes, the lacunarity is lower due 

to the reduced number of holes. The appearance of the 

texture is strongly affected by the lacunarity due to the 

spatial heterogeneity of structures. The more lacunar 

image (Fig. 1b) indicates that there is less structures in 

the image. The lacunarity is a powerful texture analysis 

feature for quantifying the porosity of complex shapes 

such as bone microarchitecture. 
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Figure 5.  Estimated lacunarity values for the two populations. 

Lacunarities estimated for the two populations are 

illustrated in Fig. 5, we can notice a good discrimination 

of the two groups, the average lacunarity of the 

osteoporotic patients is higher compared to that of the 

control subjects. Due to loss of bone mass and trabecular 

network connectivity, the trabeculae becomes very thin. 

However, some overlapping between the two populations 

is noticed. 

B. SVD Analysis 

The computational efficiency is mandatory for the 

SVD analysis. For timeliness, it is not necessary to scan 

all directions, a scan every 10 ° is enough (Fig. 6.a). 

          
(a)                           (b) 

Figure 6.  Illustraion of the SVD method for a trabecular bone image 
with different angles. (a) α = 10 °, (b) α = 1°. 

Fig. 6 a and b show a case of scanning a medullary 

space with different angles. As the angle decreases, 

porous space is fully scanned, but this is time consuming 

(14.11s for a step angle of 1° compared to 1.31s for a step 

angle of 10°). It should be noted also that the high rate of 

false alarms presented in Fig. 6.b is due to the 

discretization artifacts of the image. The results of the 

SVD method applied to the radiographic bone images of 

Fig. 1.a and b respectively are (
*

.spacemV
= 14.09, time = 

203.03s) and (
*

.spacemV
= 20.28, time = 300.15s). 

All our tests provided a high value of SVD feature OP 

images. This is mainly due to high discontinuity (porosity) 

of the trabecular network, resulting in an important 

marrow space. As a conclusion, the SVD method is well 

suited for the characterization of the porosity of 

trabecular boneon radiographic images. To overcome the 

problem of false alarms due to discretization artifacts of 

the image and the problem of the computation time for 

the SVM method, an improved algorithm was 

implemented. For a given pixel, the scanning is done only 

in eight preferred directions. The scanning pixels 

belonging to the marrow space is performed on these 

directions, avoiding aberrations results using tangents. 

Fig. 7 shows the approach used for the scanning of the 

medullary space. In Fig. 7.a, jumping is set to 2 pixels for 

the scan. In Fig. 7.b, the jump is set to 1 pixel, the image 

is fully scanned. In the first case, the advantage goes to 

the computation time, unlike in the latter where we 

noticed a long process time, the result of the scan is 

almost identical in both cases (Fig. 7.a and 7.b). Also we 

noticed that the trabeculae (white areas) were preserved. 

   
(a)                              (b) 

Figure 7.  Improved scan of the medullary space to compute the SVD 
method, (a) by 10 pixels block, (b) for all pixels. 

TABLE I.  MEAN ± SD FOR LACUNARITY, SVD AND BMD, 
ESTIMATED FOR OP AND CT IMAGES AS WELL AS P-TEST VALUES 

 CT OP p-value 

 Λ 
*

.spacemV
 

BMD 

0.182 ± 0.012 

2.028 ± 0.105 

0.836 ± 0.119 

0.193 ± 0.010 

2.103 ± 0.101 

0.732 ± 0.137 

1.82e-07 

1.83e-05 

5.30e-07 

 

The performance of an estimator to discriminate the 

two populations was evaluated with the p-value statistical 

test using the rank sum Wilcoxon test [19]. We 

considered a highly statistical significant p-value (p-value 

< 0.001). Table I presents the results expressed as mean ± 

standard deviation (SD) for all the subjects. As can be 

seen in Table I, all the features separate significantly the 

OP patients and the CT subjects. The obtained p-values, 

1.82e-07, 1.83e-05, and 5.30e-07 respectively for Λ, 
*

.spacemV
 and BMD are significant. The best performance 

of discrimination is up to the lacunarity which performs 

well the porosity quantification of the trabecular network. 

Fig. 8 illustrates the SVD estimated over the images of 

the two populations. As can be observed, the two 

populations can be discriminated. The SVD method 
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reveals high values for OP due to higher porosity related 

to the disorder of the trabecular network. 
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Figure 8.  Estimated SVD values for the two populations. 

In this work, we demonstrated the performance of two 

methods to discriminate between two groups (OP and 

CT). We highlighted the relationship between lacunarity 

and porosity of the trabecular network due to 

osteoporosis. Healthy subjects show low lacunarity 

values, whereas osteoporotic patients with risk of fracture 

have high lacunarity values (Fig. 5). Relationships 

between the SVD and osteoporosis were demonstrated. 

CT subjects have low porosity due to better connectivity 

of the trabecular bone network. 

In terms of discrimination of the subjects, there is a 

variability in Table I, but the best performance is 

obtained by the lacunarity, which had the best ability to 

discriminate the subjects (p = 1.82e-07), a cut above the 

BMD (p = 5.30e-07). Moreover, the lacunarity is more 

accurate and reliable than the SVD, which provide a 

lower statistical significant test value (p = 1.83e-05), with 

more overlap between the two groups.  

According to these results, we can conclude that SVD 

and lacunarity methods are reliable tools to detect bone 

diseases such as osteoporosis. 

IV. CONCLUSION 

The objective of this work was to implement two 

methods for the quantification of porosity on radiographic 

bone images. To achieve this task, two methods were 

compared. Lacunarity which showed good performances 

to discriminate between two populations of healthy and 

osteoporotic subjects. Lacunarity was lower for control 

cases, which indicates the characteristics of the 

distribution of the holes and the heterogeneity of the 

images. Our study suggests that the lacunarity which is a 

second order statistical statistic measure of the second 

order, can be helpful for characterizing the trabecular 

bone shape with sufficient sensitivity to distinguish 

different degrees of bone quality. Lacunarity analysis of 

trabecular texture is a promising additional diagnostic 

tool to complement the BMD in the assessment of bone 

quality for the characterization of osteoporosis and 

increased fracture risk prediction. 

The star volume distribution method seems to be a 

useful tool for characterizing the trabecular bone 

tissutissue. 

Further studies are needed to provide more information 

about the precise relationship between bone loss and 

porosity analysis parameters, to understand the exact 

mechanisms leading to bone fragility and to find new 

therapeutic strategies more effective in dealing with the 

consequences of osteoporosis and other metabolic bone 

diseases. 
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