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Abstract—This paper proposes a knowledge representation 

system by extension of the concept of atom. Not only 

conventional simple atoms, but also atoms representing 

first-order formulas, which are called formula atoms, are 

used. By this extension, predicates, logical connectives, and 

quantifiers may occur in atoms, and can be regarded as 

objects in the same class, allowing more natural translation 

from natural language sentences into extended formulas and 

more flexible computation for solving logical problems.  

 

Index Terms—formula atom, constraint, knowledge repre-

sentation system, declarative description, query-answering 

problem 

 

I. INTRODUCTION 

A query-answering problem (QA problem) is a pair q, 

K, where q is a query atom and K is a logical formula 

describing background knowledge. The problem is 

concerned with finding all ground instances of the query 

atom q that are logical consequences of the background 

knowledge K. Using definite clauses to represent 

background knowledge, QA problems are investigated 

extensively in logic programming [1]. So far, many 

subclasses of QA problems have been discussed. 

Recently wide attention has been given to QA problems 

whose background knowledge is a combination of 

description logic axioms/assertions and clauses [2]-[4]. 

However, these are rather small subclasses of QA 

problems. QA problems on full first-order logic with 

built-in constraints (for short, QA problems on FOLB), 

which constitute a far larger class of QA problems, have 

not been investigated. One of our long term objectives is 

to develop a general method for solving QA problems in 

this general class.  

In [5], we showed that proof problems can be regarded 

as a subclass of QA problems. As they include proof 

problems, QA problems on FOLB form one of the most 

                                                           
Manuscript received July 1, 2014; revised November 1, 2014. 

basic and fundamental classes of problems for the 

research of human intelligent behaviors. In the 

conventional proof theory, a first-order formula is 

converted into a clause set using the conventional 

Skolemization [6], and new clauses are inferred from 

existing clauses using the resolution rule. This method, 

however, does not work well with a larger class of QA 

problems. For example, as illustrated in [7], the 

conventional Skolemization and resolution may give 

incorrect results for solving QA problem on FOLB. 

To solve QA problems on FOLB, we have extended 

first-order logic with function variables in [8]. This 

extension enables us to equivalently convert first-order 

formulas into extended clauses. The conversion process is 

called meaning-preserving Skolemization. 

To extend first-order logic, we need a general theory of 

logical structures [9], [10], which allows us to invent a 

new logic systematically. The concept of model in the 

conventional logics is too specific and restricted. It 

depends on concepts of predicates, terms, and variables. 

In the theory of logical structures [9], [10], a model is a 

subset of some predetermined set G, which is independent 

of predicates, terms, and variables. A declarative 

description determines a set of models in a logical 

structure. 

Based on the equivalent transformation (ET) principle, 

we invented the solution method for QA problems [11], 

which can solve a far larger class of QA problems 

compared to definite-clause-based QA problems and 

description-logic-based QA Problems. Moreover, the ET-

based method provides more flexible solution paths than 

resolution-based methods and tableau-based methods for 

description logics. 

In this paper, we aim to extend the concept of atom 

itself by allowing it to have other atoms as arguments. 

For example, we introduce an atom such as 

( ( ))       say john saymaryhello , which has as its arguments 

the atom (   ) saymaryhello . This cannot be represented as 

an atomic first-order formula. The predicate say above 
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relates the term john and the atom (   ) saymaryhello . We 

also introduce atoms such as ( ( )     ( )  )and boy john girl mary and 

      ( ( ( ) ( )))   Ax imply dog x animal x  to represent first-order 

formulas. The symbol ‘and’ represents logical 

conjunction (  ) and the symbol ‘A’ represents the 

universal quantifier (  ). They appear in the predicate 

position in an atom, and they take atoms as arguments. 

By the introduction of atoms in argument positions and 

that of formulas in atom positions, logical connectives 

and quantifiers inside formula atoms become more 

similar to predicates, since formula atoms may contain 

them at predicate positions. If we can extend the 

conventional theory to allow such enriched formulas, 

then more natural translation from a natural language into 

formulas is possible. Moreover, the concept of 

computation, which is regarded as transformation of 

formulas, is also extended and becomes more flexible. 

The rest of the paper is organized as follows: Section II 

formulates S-expressions, based on which formula atoms 

are defined in Section III. Section IV introduces simple 

constraints, referential constraints, and func-constraints. 

After defining extended formulas in Section V, Section 

VI formulates declarative descriptions and Section VII 

establishes their semantics. Section VIII introduces two 

basic classes of formulas, i.e., clauses and if-and-only-if 

formulas. Section IX presents the construction of a 

knowledge representation system. Section X demon-

strates transformation rules and computation using them. 

Section XI concludes the paper. 

The following notation is used: For any set A, pow(A) 

denotes the power set of A. Bool denotes the set 

,?{ }true false . 

II. S-EXPRESSIONS 

Let   be a set of symbols such that  nil . An 

( )   S expression symbolicexpression  on   is defined 

inductively as follows: 

 

 

An S-expression 1 2( | ( | ( | ( |     ) )))na a a nil  is often 

written as 1 2    ) ( na a a . The S-expression nil is often 

written as ( ). The set of all S-expressions on  is denoted 

by S(  ). 

An alphabet ,?,?  is assumed, where (i) K, 

V, FV, and L are countably infinite sets of constants, 

variables, function variables, and labels, respectively, (ii) 

these four sets are mutually disjoint, and (iii)   nil K . 

Each variable in V is called an AT-variable (atom/term-

variable), and each function variable in FV is called an 

F-variable. In the rest of this paper, the term “variable” 

alone means an AT-variable or an F-variable. 

Let ( )FC n  be the set of all mappings from ( )  S K n to 

.?         ( ) { ( )     | }S K Let FC FC i iisanonnegativeinteger . An 

element of FC  is called a function constant. 

III. FORMULA ATOMS  

A formula atom is defined inductively as follows: 

 ,?

  

 
      

 
    

 

The symbols ‘ ’A , ‘ ’E , ‘ ’fA , and ‘ ’fE  in the last two 

conditions are called inside-atom quantifiers. 

Let A denote the set of all formula atoms. A 

substitution on V as well as a substitution on FV

 determines a total mapping on A. 

For any formula atom   a A , let ( )freeV a  denote the 

set of all free AT-variables occurring in a, and 

) (freeFV a denote the set of all free F-variables 

occurring in a. A formula atom containing no free 

variable is called a ground formula atom, i.e., a formula 

atom a is ground iff         ( ) ( )freeV a and freeFV a  . 

Let G denote the set of all ground formula atoms. 

Example 1: Assume that isChild, say, append, and eq

 are predicate symbols in K, john, mary, and hello are 

constants in K, and w, x, y, z, X, and Z are AT-variables 

in V. Then the following four S-expressions are formula 

atoms (1): 

   

       

   

              

                      

( )

( ( ))

( )

( ( ( ( ( ( | ))

( ( ( | ))

( )))))

        

                                        )

isChild johnmary

say john say mary hello

append x y z

E w E X E Z and eq x w X

and eq x w Z

append X y Z

        (1)
 

IV.
 

CONSTRAINTS 
 

Let   FG FC , and let CM(m) denote the set of all 

partial mappings from 

 ( ( ) ( ) ( ) )          F

mS K G pow S K pow G G   

 to Bool. Constraints, simple constraints, referential 

constraints, and func-constraints are defined below. 

1)
 
Assume that  


 

(  ) CM m , where m
 
  1, and 


 

Each of 
,?

( )  S K V
 

or a label in L. 

Then 
,?,?  is a constraint, which is called 

either a simple constraint or a referential constraint as 

follows: 
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1) If   p K and are S-expressions in 

       ) (S K V FC FV   , then the S-expression 

1   ) ( npt t is a formula atom.

2) If a is a formula atom, then the S-expression (not a) 

is a formula atom.

3) If a and b are formula atoms, then the S-expressions 

(and a b), (or a b), and (imply a b) are formula atoms.

4) If x is an AT-variable in V and a is a formula atom, 

then the S-expressions (A x a) and (E x a) are formula 

atoms.

5) If h is an F-variable in FV and a is a formula atom, 

then the S-expressions (  ) fA ha and (  ) fE ha are 

formula atoms.

1) An element of  is an S-expression on  .

2) If a and a are S-expressions on  , then ( '| )a a is an 

S-expression on  .

 = K, V, FV, L 

t1, , tn 

t1, , tm  is an S-expression in 

, t1, , tm 
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 If none of ,?  is a label in L, then it is called a 

simple constraint. 

 If at least one of ,?  is a label in L, then it is 

called a referential constraint. 

2)  Assume that 

 h is an n-ary F-variable in FV or a function 

constant in FC, where n   0, 

 ,?,?
 are S-expressions in S(K  V), and 

 func is a mapping such that if h is a function 

constant in FC and ,?,?
are S-expressions 

in S(K), then ,?,?,?  ,?  

Then 
,?,?,?,?

 is a constraint, which 

is called a func-constraint. 

A constraint is called a ground constraint if it contains 

no free variable in   V FV . 

Example 2: Let     2eq CM   such that for any S-

expressions 
         

,?
 and eq , 1, 2   are simple constraints. The 

truth value of a simple constraint is determined when it is 

ground. For example, eq , 1, 2   is false and eq , 4, 

4   is true. 

Example 3: Let  not  CM(2) such that for any 

formula atom 
   

       . Then 
 ,

   is a 

referential constraint. The truth value of a referential 

constraint is determined if it is ground and a model 

corresponding to each label appearing in the constraint is 

given. For instance, 
 ,

   is true if G is a 

model corresponding to the label 0l  and  
 

Example 4: For meaning-preserving Skolemization 

devised in [8], func-constraints are used. For example, the 

first-order formula 
,?  ,

 

is converted by meaning-preserving Skolemization into 

the clause set {C1, C2} given by: 
     * ?   ,? * ,? *

   * ?
* ?   ,? * ,? * ,?,? * ,

 

As shown above, variables with the prefix ‘*’ are often 

used in a clause. By contrast, variables without the prefix 

‘*’ are often used inside a formula atom. Variables with 

the prefix ‘*’ and those without it both belong to V. 

V. EXTENDED FORMULAS 

An extended formula (for short, formula), is defined 

inductively as follows: 

 
 

 

 

 

 

The quantifiers  ,  , 
f , and  f  in the last two 

conditions are called formula-level quantifiers. 

Given a formula  , the following notation is 

introduced: 

 ( )V   is the set of all AT-variables occurring in . 

 ( )FV   is the set of all F-variables occurring in . 

 
1( )BV   is the set of all AT-variables that are 

bound by inside-atom quantifiers in . 

 
2 ( )BV   is the set of all AT-variables that are 

bound by formula-level quantifiers in . 

 
1( )BFV   is the set of all F-variables that are bound 

by inside-atom quantifiers in . 

 
2 ( )BFV   is the set of all F-variables that are 

bound by formula-level quantifiers in . 

 
1 2     ( ) ( ) ( ( ) ( )  ) freeV V BV BV      . 

 
1 2     ( ) ( ) ( ( ) ( ))  freeFV FV BFV BFV      . 

A ground formula is a formula that contains no free 

variable, i.e., a formula    is    ground   iff 

           . For example, the 

formula 

,?,?   
 

is not ground (since h occurs in it as a free variable), 

while the formula 

:?,?,? 

 

is ground. 

VI. DECLARATIVE DESCRIPTIONS 

A declarative description D contains sets of formulas, 

each of which may contain constraints. A constraint may 

in turn contain labels, which refer to some other worlds in 

the description D. More precisely, a declarative 

description D is a set of pairs of labels and formulas, 

i.e.(2), 

              (2) 

where each of the il  is a label and each of the 
isD  is a 

formula. For any i    {0, 1, , n}, il  is called a world 

identifier and SiD  a world description. 

The semantics of a declarative description D, which 

will be given in Section VII, is outlined below. Let D be a 

declarative description ,?:? ,?:?

Assume that for each i    {0, 1, , n}, Gi is the intended 

model, which is a set of ground formula atoms, of SiD . 

Then the meaning of each referential constraint in SiD  is 

determined with reference to SiD . Accordingly, SiD  

which contains labels, determines a set SiM  of possible 

models. Then iG should satisfy the condition  i SiG M . 

Consequently, iG  should satisfy the system of constraints 
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1) Each formula atom is a formula.

2) Each constraint is a formula.

3) If  is a formula, then so is  .

4) If  and  are formulas, then so are     ,     , 

     , and      .

5) If x is an AT-variable in V and  is a formula, then 

and are formulas.x:  x:  

6) If h is an F-variable in FV and  is a formula, then 

are formulas.

t1, , tm 

t1, , tm 

t1, , tn, tn+1 

t1, , tn, tn+1 

 func(h, t1, , tn, tn+1) = true iff h(t1, 

, tn) = tn+1. 
func, h, t1, , tn, tn+1 

t1, t2  S(K), eq(t1, t2) = true iff t1 = t2. Then 

eq, x, y 

g  G  subset G of G, not

( g, G ) = true iff g  G not, (p 2), l0 

and any

not, (p 2), l0 

p 2)  G. (

x: (hasChild(Peter, x)  (y: motherOf(x, y))) 

C1:  (hasChild Peter *x)  func, *h1, *x 

C2:  (motherOf *x *y)  func, *h1, *x, func, *h2, *y 

f h:  and f h:  

freeV and freeFV  ( ) ( )

x: (func, h, x  (hasChild Peter x)) 

f h: (x: (func, h, x  (hasChild Peter x))) 

D = {(l0: Ds0), (l1: Ds1), , (ln: Dsn)}, 

{(l0: Ds0), (l1: Ds1), , (ln: Dsn)}. 
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given in Section VII-C, where a mapping 
imodel  is 

defined by: ,? 

system of constraints, all the n+1-  

are determined, and the first components of all these 

tuples collectively constitute the set of all models of the 

declarative description D. 

Formulas of two specific forms, i.e., clauses and if-

and-only-if-formulas, will be introduced in Section VIII. 

They are important for rich representation and efficient 

computation for a declarative description. Consider, for 

example, a declarative description 
0 0   :{( )} SD l D . 

0SD may be a closed formula of the form 

1      :?F F Nh h E  , where E is divided into a set of iff-

formulas 
1E  and another set 

2E  of formulas, and 
2E  is 

converted by meaning-preserving transformation into a 

clause set 
SC , possibly containing in clause bodies 

referential constraints with a label 
0l , which refers to the 

meaning of 
0SD . Computation using iff-formulas and 

clauses will be shown in Section X.  

VII. SEMANTICS 

A. Interpretations 

In the following, let D be a declarative description 
,?:? ,?:?

interpretation is a 

subset of G. A model of D is an interpretation that 

“satisfies” D. The objective of this section is to determine 

the set of all models of D, by making clear what 

“satisfies” above means.  

B. Truth Values of Ground Formulas 

Assume that for each i   {0, 1, , n}, a set iG  of 

ground formula atoms that corresponds to a label il  is 

given. Then, for any interpretation I, the truth value of a 

ground formula under I is defined as follows: 

1) A ground formula atom g is true under I iff g   I. 

2) A ground constraint ,?,?
 is true under I iff 

,? 
, where for each i  {1, , m}, 

 if   id L , then  i id G  ; 

 if   id L , then i id d  . 

3) A ground func-constraint ,? ,? ,?
 is 

true under I iff ,?,?
  

4) For any ground formula  ,   is true under I iff  

 is false under I. 

5) For any ground formulas  and  ,    

(respectively,   ,   , and   ) is true 

under I iff   and  are true (respectively, at least 

one of   and   is true, at least one of   and   is 

true, and   and   have the same truth value) under 

I. 

6) A ground formula , where x is an AT-variable 

in V, is true under I iff for any S-expression (  ) t S K , 

E{x/t} is true under I. 

7) A ground formula , where x is an AT-variable 

in V, is true under I iff there exists at least one S-

expression (  ) t S K  such that E{x/t} is true under I. 

8) A ground formula   , where h is an F-variable 

in FV, is true under I iff for any function constant f 

in FC, E{h/f} is true under I. 

9) A ground formula   , where h is an F-variable in 

FV, is true under I iff there exists at least one 

function constant f in FC such that E{h/f} is true 

under I. 

An interpretation I is a model of a closed formula  iff 

 is true under I. 

C. A System of Membership Constraints and Models of 

a Declarative Description 

Consider i   {0, 1, , n}. If no label occurs in it, 

SiD determines the set of all models, which is denoted by 

( )imodel l . However, in general, labels may occur in 
SiD . 

In the presence of labels, when models ,?,?
 of 

,?,? ,
 respectively, are known, the set of all 

models of 
SiD  can be determined uniquely and this set is 

denoted by ,? 

By its definition, Gi is an element of 
,? for each i   {0, 1,  , n}. 

Accordingly, we have a system of membership 

constraints, which is denoted by SMC(D), as (3) 

,?,? ,?

,?,? ,?

,?
,?

,?

,?

, ,                    (3) 

Let D be a declarative description. ,?,
 is 

called an extended model of D iff the set of equations 
   ,?,?

 satisfies SMC (D). 
0G  

is a model of D iff there exist
1G , , 

nG such that 

,?,
 is an extended model of D. The set of all 

models of D is denoted by Models(D). 

VIII. CLAUSES AND IF-AND-ONLY-IF FORMULAS 

In general, any formula can be used for defining SiD . 

However, some specific classes of formulas are 

commonly known to be useful. Two classes of formulas, 

i.e., clauses and if-and-only-if formulas, are introduced in 

this section.  

A. Clauses  

A clause C is an expression of the form (4) 

,?   ,? ,? ,

                        
(4)

 
where (i) k, n  0, (ii) each of the ai is a formula atom, 

and (iii) each of the bj is a formula atom or a constraint. 

The meaning of the clause C is given by the formula (5) 

1 1           (( )    ,)) (n kb b a a    
                   

(5)
 

By the obtained Msi = modeli(G0, G1, , Gn). 

tuples of G0, G1, , Gn] [

l0: {(  An Ds0), (l1: Ds1), , (ln: Dsn)}. 

, d1, , dm 

(d1, , dm) = true

 func, h, t1, , tm, tm+1 

func(h, t1, , tm, tm+1) = true. 

x: E

f h: E

f h: E

x: E

G0, G1, , Gn 

Ds0, Ds1, , Dsn, 

 model(li, G0, G1, , Gn). 

model(li, G0, G1 , Gn) , 

x0  model(l0, x0, x1, , xn) 

x1  model(l1, x0, x1, , xn) 

x2  model(l2, x0, x1, , xn) 

 

xn  model(ln, x0, x1, , xn) 

[G0, G1, , Gn]

{(x0  = G0), (x1 = G1), , (xn = Gn)} 

G0, G1, ,  [ Gn] 

a1, , ak  b1, , bn
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where  denotes universal quantifications for all free AT-

variables. 

Example 5: The clauses C1 and C2 in Example 4 

together represent the knowledge that Peter has a child 

who is someone's mother. 

B. If-and-Only-If Formulas 

An if-and-only-if formula (for short, iff-formula) I is a 

formula of the form (6) 

1      ( )   na conj conj                           (6) 

where (i) 0n  , (ii) a is a formula atom, and (iii) each of 

the conji is a finite subset of formula atoms and/or 

constraints. When 1n  , the pair of braces on the right-

hand side is often omitted. For each i  {1, , n}, conji 

corresponds to the existentially quantified atom 

conjunction FOL(conji, a) given by (7) 

     :? 
         (7) 

where , are all the variables that occur in conji 

but do not occur in a. The iff-formula I corresponds to the 

universally quantified formula(8) 

  ¼   ,?     (8) 

which is denoted by FOL(I). 

Example 6: What it means for a binary relation to be 

symmetric can be defined by the iff-formula(9) below. 

      
     

(9)
 

The formula atom on its right-hand side specifies a 

necessary and sufficient condition for a relation *r to be 

symmetric, i.e., whenever *r contains a pair x, y, it must 

also contain the pair y, x.  

C. A Formula Attached to a Label 

A formula SiD  attached to a label iI  is often a closed 

conjunction E of clauses and iff-formulas. Such a 

conjunction E can be represented as a set of clauses and 

iff-formulas. These clauses and iff-formulas may include 

function variables 1h , , nh , which make the clause set 

appear to be an open formula. Semantically, these 

function variables are globally existentially quantified. As 

such, SiD  is a closed formula , where all 

function variables occurring in E are existentially 

quantified by  

IX. CONSTRUCTING A KNOWLEDGE REPRESENTATION 

SYSTEM 

We show how to define built-in constraints in Section 

IX-A. The meanings of formula atoms are defined in 

Section IX-B. Knowledge representation for QA 

problems based on built-in constraints and formula atoms 

is described in Sections IX-C–IX-E.  

A. The Meanings of Basic Built-In Atoms 

An eq-atom is defined by the iff-formula (10) 

,                   (10) 

where eq, *X1, *X2 is a constraint defined in Example 2 

(Section IV). This is a typical form of the definition of a 

built-in atom. Other examples of built-in atom definitions 

are (11):            

,?,

,?
,? ,

        (11) 

where (i) ,?   
 iff 

1t  and 
2t  are numbers such 

that 
1 2  t t , and (ii) ,?,?   

 iff 
1t , 

2t , and 
3t  

are numbers such that 
1 2 3    t t t  . 

B. The Meanings of Formula Atoms 

Assume that only one world with the label l0 is 

considered. To introduce the logical connective not, we 

define it by (12) 

   0 notnot X X l                       (12) 

where *X is a    0 notnot X X l   variable in V and 

for any g   G and any G  G, not(g, G) is true iff g  G. 

Similarly, we define the meanings of and, or, and 

imply by 

 ,?,
 

 , ? 

 ,?,
 

where *X and *Y are variables in V and for any g, g   G 

and any G  G, 

  , ,and g g G   is true iff g G  and g G , 

  , ,or g g G   is true iff g G  or g G , 

  , ,imply g g G   is true iff g G  or g G . 

The meanings of A and E are defined as follows: For 

any variable x in V and any formula atom X that contains 

no free variable other than x and contains no free function 

variable,             

     0,anyAxX AxX l    , 

     0,existsExX ExX l    , 

where for any g   G and any G   G, 

 
    

 

 
 

  

The meanings of Af and Ef are defined below. For any 

function variable h and any formula atom X that 

contains no free function variable other than h and 

contains no free variable, 

    ,? 

    

where for any g   G and any G  G, 

    ,?  

  

   

   

FOL(conji, a) = y1  yk: {b | b  conji}, 

(a  (FOL(conj1, a)    FOL(conjn, a))), 

(sym *r)  {(A x (A y (imply (*r x y) (*r y x))))} 

y1, , yk 

f h1  f hn: E

(eq *X1 *X2)  eq, *X1, *X2  

(< *X1 *X2)  lt, *X1, *X2  
(+ *X1 *X2 *X3)  sum, *X1, *X2, *X3,

lt,, t1, t2 = true  

sum, t1, t2, t3 = true 

(and *X  *Y)  and, *X, *Y, l0, 

(or *X *Y)  or, *X, *Y, l0, 

(imply *X *Y)  imply, *X, *Y, l0, 

any(g, (A x X), G) is true iff 

{X
 
|
 
(t

 
G) &

 
(

 
= {x/t})}  G, 

exists(g, (E
 
x
 
X), G) is true iff

 
{X | (t  G) & ( = {x/t})}  G  . 

(Af h X)  any-f, (Af h X), l0

(Ef h X)  exists-f, (Ef h X), l0

any-f(g, (Af h X), G) is true iff 

{X | (t  GF) & ( = {h/t})}  G, 

exists-f(g, (Ef h X), G) is true iff 

{X | (t  GF) & ( = {h/t})}  G  . 
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C. Modeling Using a Declarative Description 

We consider a declarative description    , 

where 
0S B F UD DEF DEF DEF   such that 

 DEFB consists of iff-formulas defining basic built-

in constraints, 

 DEFF consists of iff-formulas defining formula 

atoms, and 

 DEFU consists of iff-formulas and clauses repre-

senting background knowledge. 

A user can construct a declarative description by 

defining DEFB and DEFF as in Sections IX-A and IX-B, 

and writing iff-formulas and clauses based on constraints 

in DEFB and formula atoms defined by DEFF. For example, 

to define the inclusion relation, DEFU may contain the iff-

formulas below: (14), (15) 

 ( ) ( ( ( ) ( )           ))         subset X Y Ae imply eleme X eleme Y    
 
(14) 

   ( ( | )) ( (                   ) ( ))elem e a X or eq e a elem e X         (15) 

where the meaning of eq is defined by DEFB, and the 

meanings of A, imply, and or are defined by DEFF. 

D. Query-Answering Problems 

A query-answering problem (for short, QA problem) 

on a declarative description D is a pair q, D, where q is 

a formula atom. The answer of this problem is the set 

( ) ( ( ))  rep q Models D , where rep(q) is the set of all 

ground instances of q and Models(D) is the set of all 

models of D. For example, if q = (subset (2 3) (4 2 1 3)), 

0 0   :{( )} SD l D , 
0S B F UD DEF DEF DEF  , and DEFU 

consists of the iff-formulas defining subset and elem 

given in Section IX-C, then q, D is a QA problem with 

its answer being {(subset (2 3) (4 2 1 3))}.  

E. Construction of Knowledge Representation Systems 

In this paper, a knowledge representation system on G 

is a mapping from some set X to pow(pow(G)). Each time 

DEFB and DEFF are determined, a mapping (16) 

                        (16) 

where X is the set of all possible DEFU, is obtained such 

that for any x  X, m(x) = Models(D), where 

0 0   :{( )} SD l D  and 
0         S B FD DEF DEF x   . This 

means that we can obtain a knowledge representation 

system on G by defining the following components: (i) a 

set G, (ii) constraints as given in Section IV, (iii) basic 

built-in atoms given by DEFB, and (iv) formula atoms 

given by DEFF.  

X. TRANSFORMATION RULES AND COMPUTATION 

In the proposed knowledge representation system, QA 

problems are solved by using many equivalent 

transformation rules (ET rules). Some ET rules are 

explained in Section X-A, and an example of 

computation using ET rules is shown in Section X-B.  

A. ET Rules 

Some ET rules are general rules, such as unfolding, 

forwarding, resolution, side-change transformation, etc. 

Specialized ET rules are also often used. An important 

class of specialized ET rules is designed to transform a 

set of atoms in the right-hand side of a clause. Examples 

of rules in this class are: 

, 

 

where the built-in atom    (   )construct x F F    constructs 

 F   from x  and F  by replacing each occurrence of 

*x in *F with a new variable.  

B. Computation by Using ET Rules 

Consider the Oedipus problem described in [12]. 

Oedipus killed his father, married his mother Iokaste, and 

had children with her, among them Polyneikes. 

Polyneikes also had children, among them Thersandros, 

who is not a patricide. The problem is to find a person 

who has a patricide child who has a non-patricide child. 

Assume that “oe”, “io”, “po”, and “th” stand, respectively, 

for Oedipus, Iokaste, Polyneikes, and Thersandros.  

This problem is represented as a QA problem with the 

query atom ) ( prob x  and the background knowledge 

consisting of the following clauses: 

     

C1:                
        

                     

                           

( ) ( ( ( )

( ( )

( ( ( )                

                                                  ( ( ))))      ))

prob x E y and isChild y x

and paty

E z and isChild z y

not pat z

  

)

 

C2:   (isChild oe io)         C3:   (isChild po io)    

C4:   (isChild po oe)        C5:   (isChild th po)    

C6:   (pat oe)         C7:      (pat th) 

Refer to the rules r1 and r2 in Section X-A. By 

applying the rule r2 to C1, a new variable, say *y, is 

introduced and C1 is transformed into: 

        

                               *

                           

( ( )

( ( ( )                 *

                                                        ( ( )))

and pat y

E z and isChild z y

not pat z )))

 

The body of C8 consists only of one formula atom, 

with and appearing in the predicate position and with two 

arguments, i.e., an isChild-atom and another and-atom. 

By the application of the rule r1, this body formula atom 

is split into two formula atoms, resulting in the clause:  

  

 

        
      

        
                  

                  
                     

( ( )

(

         

( ( )

( ( )) )
 

) )

and pat y

E z and isChild z y

not pat z





 
Again the and-atom in the body of C9 is selected. By 

applying the rule r1 to it, C9 is transformed into the clause 

C10 below, with three formula atoms in its body.  

 

 

                     ,

                   

( )

( ( ( )         

                                     ( ( )) ))

pat y

E z and isChild z y

not pat z




 

D = {l0: Ds0}

m: X  pow(pow(G))

r1:   (and *X *Y)  *X, *Y

r2:   (E *x *F)  {(construct *x *F *F)}, *F

C8:   (prob *x)  (and (isChild *y *x)   

C9:   (prob *x)  (isChild *y *x),   

C10:   (prob *x)  (isChild *y *x),  
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Next, the rule r2 is applied. The application introduces 

a new variable *z and transforms C10 into: 

C11:

 

              ,
                  

     ,
                  

        

                     

( ) ( )

( )

( ( )

(           ( )))

prob x isChild y x

pat y

and isChild z y

not pat z

   



 



 

Further application of the rule r1 to C11 yields:  

C12: 

  

          ,
    

                 * ,
    

            

( ) ( )

( )

 
* ,

                 (  ( )   * ) 

prob x isChild y x

pat y

not pat z

   

 

By side change transformation [11] of the a not-atom, 

C12 is transformed into the multi-head clause below. 

          ,

                        ,

                                      

( )

( ).

pat y

isChild z y



 

 

C13 is a conventional clause consisting of only simple 

atoms. By unfolding with respect to isChild (two times), 

C13 is transformed into the following three clauses: 

    

    

     

By forwarding transformation [13], C15 and C16 are 

transformed into: 

C17:      (  ) ) (probio pat po  

C18:      (  ) ) (proboe pat po  

By erasing independent satisfiable atoms [11], C14 is 

transformed into: 

 

Applying resolution to C17 and C19 yield the resolvent 

clause: 

C20:    ( ) probio   

By elimination of subsumed clauses [11], C17 and C19 

are removed. C18 is no longer useful for forwarding [13] 

and is removed. As a result, C1 is transformed into C20, 

from which the answer to the problem is readily obtained.  

XI. CONCLUSIONS 

We have successfully extended the concept of atom. 

The concepts of predicates, logical connectives, and 

quantifiers are combined. Such extension is not allowed 

by the conventional semantics, where the concepts of 

interpretations and models depend on the meanings of 

atoms. The general theory of logical structures [9], [10] 

and the new definition of a model based on referential 

constraints are essential for the construction of 

knowledge representation systems in this paper. 
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 (isChild *z *y), 

C13:   (pat *z), (prob *x)  (isChild *y *x), 

C14:   (pat po), (prob io)  (pat oe) 

C15:   (pat th), (prob io)  (pat po) 

C16:   (pat th), (prob oe)  (pat po) 

C19:   (pat  po), (prob io)  
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