
Constructing Knowledge Representation Systems

with First-Order Formulas as Atoms

Kiyoshi Akama

Information Initiative Center, Hokkaido University, Hokkaido, Japan

Email: akama@iic.hokudai.ac.jp

Ekawit Nantajeewarawat
Computer Science, Sirindhorn International Institute of Technology, Thammasat University, Thailand

Email: ekawit@siit.tu.ac.th

Tadayuki Yoshida
Faculty of Computer Science, Hokkaido University, Hokkaido, Japan

Email: tadayuki@sh.rim.or.jp

Abstract—This paper proposes a knowledge representation

system by extension of the concept of atom. Not only

conventional simple atoms, but also atoms representing

first-order formulas, which are called formula atoms, are

used. By this extension, predicates, logical connectives, and

quantifiers may occur in atoms, and can be regarded as

objects in the same class, allowing more natural translation

from natural language sentences into extended formulas and

more flexible computation for solving logical problems. 

Index Terms—formula atom, constraint, knowledge repre-

sentation system, declarative description, query-answering

problem

I. INTRODUCTION

A query-answering problem (QA problem) is a pair q,

K, where q is a query atom and K is a logical formula

describing background knowledge. The problem is

concerned with finding all ground instances of the query

atom q that are logical consequences of the background

knowledge K. Using definite clauses to represent

background knowledge, QA problems are investigated

extensively in logic programming [1]. So far, many

subclasses of QA problems have been discussed.

Recently wide attention has been given to QA problems

whose background knowledge is a combination of

description logic axioms/assertions and clauses [2]-[4].

However, these are rather small subclasses of QA

problems. QA problems on full first-order logic with

built-in constraints (for short, QA problems on FOLB),

which constitute a far larger class of QA problems, have

not been investigated. One of our long term objectives is

to develop a general method for solving QA problems in

this general class.

In [5], we showed that proof problems can be regarded

as a subclass of QA problems. As they include proof

problems, QA problems on FOLB form one of the most

Manuscript received July 1, 2014; revised November 1, 2014.

basic and fundamental classes of problems for the

research of human intelligent behaviors. In the

conventional proof theory, a first-order formula is

converted into a clause set using the conventional

Skolemization [6], and new clauses are inferred from

existing clauses using the resolution rule. This method,

however, does not work well with a larger class of QA

problems. For example, as illustrated in [7], the

conventional Skolemization and resolution may give

incorrect results for solving QA problem on FOLB.

To solve QA problems on FOLB, we have extended

first-order logic with function variables in [8]. This

extension enables us to equivalently convert first-order

formulas into extended clauses. The conversion process is

called meaning-preserving Skolemization.

To extend first-order logic, we need a general theory of

logical structures [9], [10], which allows us to invent a

new logic systematically. The concept of model in the

conventional logics is too specific and restricted. It

depends on concepts of predicates, terms, and variables.

In the theory of logical structures [9], [10], a model is a

subset of some predetermined set G, which is independent

of predicates, terms, and variables. A declarative

description determines a set of models in a logical

structure.

Based on the equivalent transformation (ET) principle,

we invented the solution method for QA problems [11],

which can solve a far larger class of QA problems

compared to definite-clause-based QA problems and

description-logic-based QA Problems. Moreover, the ET-

based method provides more flexible solution paths than

resolution-based methods and tableau-based methods for

description logics.

In this paper, we aim to extend the concept of atom

itself by allowing it to have other atoms as arguments.

For example, we introduce an atom such as

(()) say john saymaryhello , which has as its arguments

the atom () saymaryhello . This cannot be represented as

an atomic first-order formula. The predicate say above

2015 Engineering and Technology Publishing 238
doi: 10.12720/jiii.3.3.238-245

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

relates the term john and the atom () saymaryhello . We

also introduce atoms such as (() ())and boy john girl mary and

 ((() ())) Ax imply dog x animal x to represent first-order

formulas. The symbol ‘and’ represents logical

conjunction () and the symbol ‘A’ represents the

universal quantifier (). They appear in the predicate

position in an atom, and they take atoms as arguments.

By the introduction of atoms in argument positions and

that of formulas in atom positions, logical connectives

and quantifiers inside formula atoms become more

similar to predicates, since formula atoms may contain

them at predicate positions. If we can extend the

conventional theory to allow such enriched formulas,

then more natural translation from a natural language into

formulas is possible. Moreover, the concept of

computation, which is regarded as transformation of

formulas, is also extended and becomes more flexible.

The rest of the paper is organized as follows: Section II

formulates S-expressions, based on which formula atoms

are defined in Section III. Section IV introduces simple

constraints, referential constraints, and func-constraints.

After defining extended formulas in Section V, Section

VI formulates declarative descriptions and Section VII

establishes their semantics. Section VIII introduces two

basic classes of formulas, i.e., clauses and if-and-only-if

formulas. Section IX presents the construction of a

knowledge representation system. Section X demon-

strates transformation rules and computation using them.

Section XI concludes the paper.

The following notation is used: For any set A, pow(A)

denotes the power set of A. Bool denotes the set

,?{ }true false .

II. S-EXPRESSIONS

Let  be a set of symbols such that nil . An

() S expression symbolicexpression on  is defined

inductively as follows:

An S-expression 1 2(| (| (| (|))))na a a nil is often

written as 1 2) (na a a . The S-expression nil is often

written as (). The set of all S-expressions on  is denoted

by S().

An alphabet ,?,? is assumed, where (i) K,

V, FV, and L are countably infinite sets of constants,

variables, function variables, and labels, respectively, (ii)

these four sets are mutually disjoint, and (iii) nil K .

Each variable in V is called an AT-variable (atom/term-

variable), and each function variable in FV is called an

F-variable. In the rest of this paper, the term “variable”

alone means an AT-variable or an F-variable.

Let ()FC n be the set of all mappings from () S K n to

.? () { () | }S K Let FC FC i iisanonnegativeinteger . An

element of FC is called a function constant.

III. FORMULA ATOMS

A formula atom is defined inductively as follows:

 ,?

The symbols ‘ ’A , ‘ ’E , ‘ ’fA , and ‘ ’fE in the last two

conditions are called inside-atom quantifiers.

Let A denote the set of all formula atoms. A

substitution on V as well as a substitution on FV

 determines a total mapping on A.

For any formula atom a A , let ()freeV a denote the

set of all free AT-variables occurring in a, and

) (freeFV a denote the set of all free F-variables

occurring in a. A formula atom containing no free

variable is called a ground formula atom, i.e., a formula

atom a is ground iff () ()freeV a and freeFV a  .

Let G denote the set of all ground formula atoms.

Example 1: Assume that isChild, say, append, and eq

 are predicate symbols in K, john, mary, and hello are

constants in K, and w, x, y, z, X, and Z are AT-variables

in V. Then the following four S-expressions are formula

atoms (1):

()

(())

()

((((((|))

(((|))

()))))

)

isChild johnmary

say john say mary hello

append x y z

E w E X E Z and eq x w X

and eq x w Z

append X y Z

 (1)

IV.

CONSTRAINTS

Let FG FC , and let CM(m) denote the set of all

partial mappings from

 (() () ()) F

mS K G pow S K pow G G   

 to Bool. Constraints, simple constraints, referential

constraints, and func-constraints are defined below.

1)

Assume that



() CM m , where m

 1, and



Each of
,?

() S K V

or a label in L.

Then
,?,? is a constraint, which is called

either a simple constraint or a referential constraint as

follows:

2015 Engineering and Technology Publishing 239

1) If p K and are S-expressions in

) (S K V FC FV   , then the S-expression

1) (npt t is a formula atom.

2) If a is a formula atom, then the S-expression (not a)

is a formula atom.

3) If a and b are formula atoms, then the S-expressions

(and a b), (or a b), and (imply a b) are formula atoms.

4) If x is an AT-variable in V and a is a formula atom,

then the S-expressions (A x a) and (E x a) are formula

atoms.

5) If h is an F-variable in FV and a is a formula atom,

then the S-expressions () fA ha and () fE ha are

formula atoms.

1) An element of  is an S-expression on  .

2) If a and a are S-expressions on  , then ('|)a a is an

S-expression on  .

 = K, V, FV, L

t1, , tn

t1, , tm is an S-expression in

, t1, , tm

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

 If none of ,? is a label in L, then it is called a

simple constraint.

 If at least one of ,? is a label in L, then it is

called a referential constraint.

2) Assume that

 h is an n-ary F-variable in FV or a function

constant in FC, where n  0,

 ,?,?
 are S-expressions in S(K  V), and

 func is a mapping such that if h is a function

constant in FC and ,?,?
are S-expressions

in S(K), then ,?,?,? ,?

Then
,?,?,?,?

 is a constraint, which

is called a func-constraint.

A constraint is called a ground constraint if it contains

no free variable in V FV .

Example 2: Let   2eq CM  such that for any S-

expressions

,?
 and eq , 1, 2  are simple constraints. The

truth value of a simple constraint is determined when it is

ground. For example, eq , 1, 2  is false and eq , 4,

4  is true.

Example 3: Let not  CM(2) such that for any

formula atom

 . Then
 ,

 is a

referential constraint. The truth value of a referential

constraint is determined if it is ground and a model

corresponding to each label appearing in the constraint is

given. For instance,
 ,

 is true if G is a

model corresponding to the label 0l and

Example 4: For meaning-preserving Skolemization

devised in [8], func-constraints are used. For example, the

first-order formula
,? ,

is converted by meaning-preserving Skolemization into

the clause set {C1, C2} given by:
 * ? ,? * ,? *

 * ?
* ? ,? * ,? * ,?,? * ,

As shown above, variables with the prefix ‘*’ are often

used in a clause. By contrast, variables without the prefix

‘*’ are often used inside a formula atom. Variables with

the prefix ‘*’ and those without it both belong to V.

V. EXTENDED FORMULAS

An extended formula (for short, formula), is defined

inductively as follows:

The quantifiers  ,  ,
f , and f in the last two

conditions are called formula-level quantifiers.

Given a formula  , the following notation is

introduced:

 ()V  is the set of all AT-variables occurring in .

 ()FV  is the set of all F-variables occurring in .


1()BV  is the set of all AT-variables that are

bound by inside-atom quantifiers in .


2 ()BV  is the set of all AT-variables that are

bound by formula-level quantifiers in .


1()BFV  is the set of all F-variables that are bound

by inside-atom quantifiers in .


2 ()BFV  is the set of all F-variables that are

bound by formula-level quantifiers in .


1 2 () () (() ()) freeV V BV BV      .


1 2 () () (() ()) freeFV FV BFV BFV      .

A ground formula is a formula that contains no free

variable, i.e., a formula is ground iff

 . For example, the

formula

,?,?

is not ground (since h occurs in it as a free variable),

while the formula

:?,?,?

is ground.

VI. DECLARATIVE DESCRIPTIONS

A declarative description D contains sets of formulas,

each of which may contain constraints. A constraint may

in turn contain labels, which refer to some other worlds in

the description D. More precisely, a declarative

description D is a set of pairs of labels and formulas,

i.e.(2),

 (2)

where each of the il is a label and each of the
isD is a

formula. For any i  {0, 1, , n}, il is called a world

identifier and SiD a world description.

The semantics of a declarative description D, which

will be given in Section VII, is outlined below. Let D be a

declarative description ,?:? ,?:?

Assume that for each i  {0, 1, , n}, Gi is the intended

model, which is a set of ground formula atoms, of SiD .

Then the meaning of each referential constraint in SiD is

determined with reference to SiD . Accordingly, SiD

which contains labels, determines a set SiM of possible

models. Then iG should satisfy the condition i SiG M .

Consequently, iG should satisfy the system of constraints

2015 Engineering and Technology Publishing 240

1) Each formula atom is a formula.

2) Each constraint is a formula.

3) If  is a formula, then so is  .

4) If  and  are formulas, then so are   ,   ,

   , and   .

5) If x is an AT-variable in V and  is a formula, then

and are formulas.x:  x: 

6) If h is an F-variable in FV and  is a formula, then

are formulas.

t1, , tm

t1, , tm

t1, , tn, tn+1

t1, , tn, tn+1

 func(h, t1, , tn, tn+1) = true iff h(t1, 

, tn) = tn+1.
func, h, t1, , tn, tn+1

t1, t2  S(K), eq(t1, t2) = true iff t1 = t2. Then

eq, x, y

g  G subset G of G, not

(g, G) = true iff g  G not, (p 2), l0

and any

not, (p 2), l0

p 2)  G. (

x: (hasChild(Peter, x)  (y: motherOf(x, y)))

C1: (hasChild Peter *x)  func, *h1, *x

C2: (motherOf *x *y)  func, *h1, *x, func, *h2, *y

f h:  and f h: 

freeV and freeFV  () ()

x: (func, h, x  (hasChild Peter x))

f h: (x: (func, h, x  (hasChild Peter x)))

D = {(l0: Ds0), (l1: Ds1), , (ln: Dsn)},

{(l0: Ds0), (l1: Ds1), , (ln: Dsn)}.

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

,?

,?:? ,?:?

 ,?,?

,?

 ,? ,? ,?

,?,?

,?,?

,?,?,

,?

,?

,?,?,?

,?,?,?

,?
,?

,?

,?

, ,

,?,

 ,?,?

,?,

,? ,?,?,

2015 Engineering and Technology Publishing 241

given in Section VII-C, where a mapping
imodel is

defined by: ,?

system of constraints, all the n+1-

are determined, and the first components of all these

tuples collectively constitute the set of all models of the

declarative description D.

Formulas of two specific forms, i.e., clauses and if-

and-only-if-formulas, will be introduced in Section VIII.

They are important for rich representation and efficient

computation for a declarative description. Consider, for

example, a declarative description
0 0 :{()} SD l D .

0SD may be a closed formula of the form

1 :?F F Nh h E  , where E is divided into a set of iff-

formulas
1E and another set

2E of formulas, and
2E is

converted by meaning-preserving transformation into a

clause set
SC , possibly containing in clause bodies

referential constraints with a label
0l , which refers to the

meaning of
0SD . Computation using iff-formulas and

clauses will be shown in Section X.

VII. SEMANTICS

A. Interpretations

In the following, let D be a declarative description
,?:? ,?:?

interpretation is a

subset of G. A model of D is an interpretation that

“satisfies” D. The objective of this section is to determine

the set of all models of D, by making clear what

“satisfies” above means.

B. Truth Values of Ground Formulas

Assume that for each i  {0, 1, , n}, a set iG of

ground formula atoms that corresponds to a label il is

given. Then, for any interpretation I, the truth value of a

ground formula under I is defined as follows:

1) A ground formula atom g is true under I iff g  I.

2) A ground constraint ,?,?
 is true under I iff

,?
, where for each i {1, , m},

 if id L , then i id G  ;

 if id L , then i id d  .

3) A ground func-constraint ,? ,? ,?
 is

true under I iff ,?,?

4) For any ground formula  ,  is true under I iff

 is false under I.

5) For any ground formulas  and  ,  

(respectively,   ,   , and  ) is true

under I iff  and  are true (respectively, at least

one of  and  is true, at least one of  and  is

true, and  and  have the same truth value) under

I.

6) A ground formula , where x is an AT-variable

in V, is true under I iff for any S-expression () t S K ,

E{x/t} is true under I.

7) A ground formula , where x is an AT-variable

in V, is true under I iff there exists at least one S-

expression () t S K such that E{x/t} is true under I.

8) A ground formula , where h is an F-variable

in FV, is true under I iff for any function constant f

in FC, E{h/f} is true under I.

9) A ground formula , where h is an F-variable in

FV, is true under I iff there exists at least one

function constant f in FC such that E{h/f} is true

under I.

An interpretation I is a model of a closed formula  iff

 is true under I.

C. A System of Membership Constraints and Models of

a Declarative Description

Consider i  {0, 1, , n}. If no label occurs in it,

SiD determines the set of all models, which is denoted by

()imodel l . However, in general, labels may occur in
SiD .

In the presence of labels, when models ,?,?
 of

,?,? ,
 respectively, are known, the set of all

models of
SiD can be determined uniquely and this set is

denoted by ,?

By its definition, Gi is an element of
,? for each i  {0, 1,  , n}.

Accordingly, we have a system of membership

constraints, which is denoted by SMC(D), as (3)

,?,? ,?

,?,? ,?

,?
,?

,?

,?

, , (3)

Let D be a declarative description. ,?,
 is

called an extended model of D iff the set of equations
 ,?,?

 satisfies SMC (D).
0G

is a model of D iff there exist
1G , ,

nG such that

,?,
 is an extended model of D. The set of all

models of D is denoted by Models(D).

VIII. CLAUSES AND IF-AND-ONLY-IF FORMULAS

In general, any formula can be used for defining SiD .

However, some specific classes of formulas are

commonly known to be useful. Two classes of formulas,

i.e., clauses and if-and-only-if formulas, are introduced in

this section.

A. Clauses

A clause C is an expression of the form (4)

,? ,? ,? ,

(4)

where (i) k, n  0, (ii) each of the ai is a formula atom,

and (iii) each of the bj is a formula atom or a constraint.

The meaning of the clause C is given by the formula (5)

1 1 (() ,)) (n kb b a a    

(5)

By the obtained Msi = modeli(G0, G1, , Gn).

tuples of G0, G1, , Gn] [

l0: {(An Ds0), (l1: Ds1), , (ln: Dsn)}.

, d1, , dm

(d1, , dm) = true

 func, h, t1, , tm, tm+1

func(h, t1, , tm, tm+1) = true.

x: E

f h: E

f h: E

x: E

G0, G1, , Gn

Ds0, Ds1, , Dsn,

 model(li, G0, G1, , Gn).

model(li, G0, G1 , Gn) ,

x0  model(l0, x0, x1, , xn)

x1  model(l1, x0, x1, , xn)

x2  model(l2, x0, x1, , xn)



xn  model(ln, x0, x1, , xn)

[G0, G1, , Gn]

{(x0 = G0), (x1 = G1), , (xn = Gn)}

G0, G1, , [Gn]

a1, , ak  b1, , bn

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

 :?

,

 ¼ ,?

,

,?,

,?
,?,

,?

,?,?

 ,?,

 , ?

 ,?,

 ,?

 ,?

2015 Engineering and Technology Publishing 242

where  denotes universal quantifications for all free AT-

variables.

Example 5: The clauses C1 and C2 in Example 4

together represent the knowledge that Peter has a child

who is someone's mother.

B. If-and-Only-If Formulas

An if-and-only-if formula (for short, iff-formula) I is a

formula of the form (6)

1 () na conj conj   (6)

where (i) 0n  , (ii) a is a formula atom, and (iii) each of

the conji is a finite subset of formula atoms and/or

constraints. When 1n  , the pair of braces on the right-

hand side is often omitted. For each i {1, , n}, conji

corresponds to the existentially quantified atom

conjunction FOL(conji, a) given by (7)

 :?
 (7)

where , are all the variables that occur in conji

but do not occur in a. The iff-formula I corresponds to the

universally quantified formula(8)

 ¼ ,? (8)

which is denoted by FOL(I).

Example 6: What it means for a binary relation to be

symmetric can be defined by the iff-formula(9) below.

(9)

The formula atom on its right-hand side specifies a

necessary and sufficient condition for a relation *r to be

symmetric, i.e., whenever *r contains a pair x, y, it must

also contain the pair y, x.

C. A Formula Attached to a Label

A formula SiD attached to a label iI is often a closed

conjunction E of clauses and iff-formulas. Such a

conjunction E can be represented as a set of clauses and

iff-formulas. These clauses and iff-formulas may include

function variables 1h , , nh , which make the clause set

appear to be an open formula. Semantically, these

function variables are globally existentially quantified. As

such, SiD is a closed formula , where all

function variables occurring in E are existentially

quantified by

IX. CONSTRUCTING A KNOWLEDGE REPRESENTATION

SYSTEM

We show how to define built-in constraints in Section

IX-A. The meanings of formula atoms are defined in

Section IX-B. Knowledge representation for QA

problems based on built-in constraints and formula atoms

is described in Sections IX-C–IX-E.

A. The Meanings of Basic Built-In Atoms

An eq-atom is defined by the iff-formula (10)

, (10)

where eq, *X1, *X2 is a constraint defined in Example 2

(Section IV). This is a typical form of the definition of a

built-in atom. Other examples of built-in atom definitions

are (11):

,?,

,?
,? ,

 (11)

where (i) ,?
 iff

1t and
2t are numbers such

that
1 2 t t , and (ii) ,?,?

 iff
1t ,

2t , and
3t

are numbers such that
1 2 3 t t t  .

B. The Meanings of Formula Atoms

Assume that only one world with the label l0 is

considered. To introduce the logical connective not, we

define it by (12)

   0 notnot X X l   (12)

where *X is a    0 notnot X X l   variable in V and

for any g  G and any G  G, not(g, G) is true iff g  G.

Similarly, we define the meanings of and, or, and

imply by

 ,?,

 , ?

 ,?,

where *X and *Y are variables in V and for any g, g  G

and any G G,

  , ,and g g G  is true iff g G and g G ,

  , ,or g g G  is true iff g G or g G ,

  , ,imply g g G  is true iff g G or g G .

The meanings of A and E are defined as follows: For

any variable x in V and any formula atom X that contains

no free variable other than x and contains no free function

variable,

     0,anyAxX AxX l    ,

     0,existsExX ExX l    ,

where for any g  G and any G  G,





The meanings of Af and Ef are defined below. For any

function variable h and any formula atom X that

contains no free function variable other than h and

contains no free variable,

 ,?



where for any g  G and any G G,

 ,?



FOL(conji, a) = y1  yk: {b | b  conji},

(a  (FOL(conj1, a)    FOL(conjn, a))),

(sym *r)  {(A x (A y (imply (*r x y) (*r y x))))}

y1, , yk

f h1  f hn: E

(eq *X1 *X2)  eq, *X1, *X2

(< *X1 *X2)  lt, *X1, *X2
(+ *X1 *X2 *X3)  sum, *X1, *X2, *X3,

lt,, t1, t2 = true

sum, t1, t2, t3 = true

(and *X *Y)  and, *X, *Y, l0,

(or *X *Y)  or, *X, *Y, l0,

(imply *X *Y)  imply, *X, *Y, l0,

any(g, (A x X), G) is true iff

{X

|

(t

G) &

(

= {x/t})}  G,

exists(g, (E

x

X), G) is true iff

{X | (t  G) & ( = {x/t})}  G  .

(Af h X)  any-f, (Af h X), l0

(Ef h X)  exists-f, (Ef h X), l0

any-f(g, (Af h X), G) is true iff

{X | (t  GF) & ( = {h/t})}  G,

exists-f(g, (Ef h X), G) is true iff

{X | (t  GF) & ( = {h/t})}  G  .

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

,

2015 Engineering and Technology Publishing 243

C. Modeling Using a Declarative Description

We consider a declarative description ,

where
0S B F UD DEF DEF DEF  such that

 DEFB consists of iff-formulas defining basic built-

in constraints,

 DEFF consists of iff-formulas defining formula

atoms, and

 DEFU consists of iff-formulas and clauses repre-

senting background knowledge.

A user can construct a declarative description by

defining DEFB and DEFF as in Sections IX-A and IX-B,

and writing iff-formulas and clauses based on constraints

in DEFB and formula atoms defined by DEFF. For example,

to define the inclusion relation, DEFU may contain the iff-

formulas below: (14), (15)

 () ((() ())) subset X Y Ae imply eleme X eleme Y    

(14)

 ((|)) (() ())elem e a X or eq e a elem e X       (15)

where the meaning of eq is defined by DEFB, and the

meanings of A, imply, and or are defined by DEFF.

D. Query-Answering Problems

A query-answering problem (for short, QA problem)

on a declarative description D is a pair q, D, where q is

a formula atom. The answer of this problem is the set

() (()) rep q Models D , where rep(q) is the set of all

ground instances of q and Models(D) is the set of all

models of D. For example, if q = (subset (2 3) (4 2 1 3)),

0 0 :{()} SD l D ,
0S B F UD DEF DEF DEF  , and DEFU

consists of the iff-formulas defining subset and elem

given in Section IX-C, then q, D is a QA problem with

its answer being {(subset (2 3) (4 2 1 3))}.

E. Construction of Knowledge Representation Systems

In this paper, a knowledge representation system on G

is a mapping from some set X to pow(pow(G)). Each time

DEFB and DEFF are determined, a mapping (16)

 (16)

where X is the set of all possible DEFU, is obtained such

that for any x  X, m(x) = Models(D), where

0 0 :{()} SD l D and
0 S B FD DEF DEF x   . This

means that we can obtain a knowledge representation

system on G by defining the following components: (i) a

set G, (ii) constraints as given in Section IV, (iii) basic

built-in atoms given by DEFB, and (iv) formula atoms

given by DEFF.

X. TRANSFORMATION RULES AND COMPUTATION

In the proposed knowledge representation system, QA

problems are solved by using many equivalent

transformation rules (ET rules). Some ET rules are

explained in Section X-A, and an example of

computation using ET rules is shown in Section X-B.

A. ET Rules

Some ET rules are general rules, such as unfolding,

forwarding, resolution, side-change transformation, etc.

Specialized ET rules are also often used. An important

class of specialized ET rules is designed to transform a

set of atoms in the right-hand side of a clause. Examples

of rules in this class are:

,

where the built-in atom ()construct x F F   constructs

 F  from x and F by replacing each occurrence of

*x in *F with a new variable.

B. Computation by Using ET Rules

Consider the Oedipus problem described in [12].

Oedipus killed his father, married his mother Iokaste, and

had children with her, among them Polyneikes.

Polyneikes also had children, among them Thersandros,

who is not a patricide. The problem is to find a person

who has a patricide child who has a non-patricide child.

Assume that “oe”, “io”, “po”, and “th” stand, respectively,

for Oedipus, Iokaste, Polyneikes, and Thersandros.

This problem is represented as a QA problem with the

query atom) (prob x and the background knowledge

consisting of the following clauses:

C1:

() ((()

(()

((()

 (())))))

prob x E y and isChild y x

and paty

E z and isChild z y

not pat z

  

)

C2: (isChild oe io)  C3: (isChild po io) 

C4: (isChild po oe)  C5: (isChild th po) 

C6: (pat oe)  C7:  (pat th)

Refer to the rules r1 and r2 in Section X-A. By

applying the rule r2 to C1, a new variable, say *y, is

introduced and C1 is transformed into:

 *

(()

((() *

 (()))

and pat y

E z and isChild z y

not pat z)))

The body of C8 consists only of one formula atom,

with and appearing in the predicate position and with two

arguments, i.e., an isChild-atom and another and-atom.

By the application of the rule r1, this body formula atom

is split into two formula atoms, resulting in the clause:

(()

(

(()

(()))

))

and pat y

E z and isChild z y

not pat z





Again the and-atom in the body of C9 is selected. By

applying the rule r1 to it, C9 is transformed into the clause

C10 below, with three formula atoms in its body.

 ,

()

((()

 (())))

pat y

E z and isChild z y

not pat z





D = {l0: Ds0}

m: X  pow(pow(G))

r1: (and *X *Y)  *X, *Y

r2: (E *x *F)  {(construct *x *F *F)}, *F

C8: (prob *x)  (and (isChild *y *x)

C9: (prob *x)  (isChild *y *x),

C10: (prob *x)  (isChild *y *x),

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

* ,

 ,

2015 Engineering and Technology Publishing 244

Next, the rule r2 is applied. The application introduces

a new variable *z and transforms C10 into:

C11:

 ,

 ,

() ()

()

(()

(()))

prob x isChild y x

pat y

and isChild z y

not pat z

   



 



Further application of the rule r1 to C11 yields:

C12:

 ,

 * ,

() ()

()

* ,

 (() *)

prob x isChild y x

pat y

not pat z

   

By side change transformation [11] of the a not-atom,

C12 is transformed into the multi-head clause below.

 ,

 ,

()

().

pat y

isChild z y



 

C13 is a conventional clause consisting of only simple

atoms. By unfolding with respect to isChild (two times),

C13 is transformed into the following three clauses:

By forwarding transformation [13], C15 and C16 are

transformed into:

C17: ()) (probio pat po

C18: ()) (proboe pat po

By erasing independent satisfiable atoms [11], C14 is

transformed into:

Applying resolution to C17 and C19 yield the resolvent

clause:

C20: () probio 

By elimination of subsumed clauses [11], C17 and C19

are removed. C18 is no longer useful for forwarding [13]

and is removed. As a result, C1 is transformed into C20,

from which the answer to the problem is readily obtained.

XI. CONCLUSIONS

We have successfully extended the concept of atom.

The concepts of predicates, logical connectives, and

quantifiers are combined. Such extension is not allowed

by the conventional semantics, where the concepts of

interpretations and models depend on the meanings of

atoms. The general theory of logical structures [9], [10]

and the new definition of a model based on referential

constraints are essential for the construction of

knowledge representation systems in this paper.

REFERENCES

[1] J. W. Lloyd, Foundations of Logic Programming, 2nd ed.,
Springer-Verlag, 1987.

[2] I. Horrocks, P. F. Patel-schneider, S. Bechhofer, and D. Tsarkov,
“OWL rules: A proposal and prototype implementation,” Journal

of Web Semantics, vol. 3, no. 1, pp. 23-40, 2005.

[3] B. Motik, U. Sattler, and R. Studer, “Query answering for OWL-
DL with rules,” Journal of Web Semantics, vol. 3, no. 1, pp. 41-60,

2005.
[4] B. Motik and R. Rosati, “Reconciling description logics and

rules,” Journal of the ACM, vol. 57, no. 30, pp. 1-62, 2010.

[5] K. Akama and E. Nantajeewarawat, “Embedding proof problems
into query-answering problems and problem solving by equivalent

transformation,” in Proc. 5th International Conference on
Knowledge Engineering and Ontology Development, Vilamoura,

Portugal, 2013, pp. 253-260.

[6] C.-L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press, 1973.

[7] K. Akama and E. Nantajeewarawat, “Proving theorems based on
equivalent transformation using resolution and factoring,” in Proc.

2nd World Congress on Information and Communication

Technologies, Trivandrum, India, 2012, pp. 7-12.
[8] K. Akama and E. Nantajeewarawat, “Meaning-preserving skolem-

ization,” in Proc. International Conference on Knowledge
Engineering and Ontology Development, Paris, France, 2011, pp.

322-327.

[9] K. Akama and E. Nantajeewarawat, “Logical structures on spe-
cialization systems: Formalization and satisfiability-preserving

transformation,” in Proc. 7th International Conference on
Intelligent Technologies, Taipei, Taiwan, 2006, pp. 100-109.

[10] K. Akama and E. Nantajeewarawat, “Construction of logical

structures on specialization systems,” in Proc. World Congress on
Information and Communication Technologies, Mumbai, India,

2011, pp. 1030-1035.

[11] K. Akama and E. Nantajeewarawat, “Equivalent transformation in

an extended space for solving query-answering problems,” in Proc.

6th Asian Conference on Intelligent Information and Database
Systems, LNAI 8397, Bangkok, Thailand, 2014, pp. 232-241.

[12] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, Eds., The Description Logic Handbook, 2nd ed.,

Cambridge University Press, 2007.

[13] K. Akama and E. Nantajeewarawat, “Conjunction-based clauses
for equivalent transformation of query-answering problems,”

International Journal of Future Computer and Communication,
vol. 1, no. 1, pp. 5-8, 2012.

Kiyoshi Akama

received his DEng from
Tokyo Institute of Technology. He is a

Professor at Division of Large-Scale
Computational Systems, Information Initiative

Center, Hokkaido University. His research

interests include program generation and

computation based on the equivalent

transformation model, programming
paradigms, knowledge representation,

semantic web, and e-learning. He is a member

of the Japanese Society for Artificial Intelligence and the Information
Processing Society of Japan.

Ekawit Nantajeewarawat

received his DEng

in Computer Science from the Asian Institute

of Technology. He is an Associate Professor
at Computer Science Program, Sirindhorn

International Institute of Technology,
Thammasat University. His research interests

include knowledge representation and

automated reasoning. He is a member of the
Association for Computing Machinery and the

Institute of Electronics, Information and
Communication Engineers.

 (isChild *z *y),

C13: (pat *z), (prob *x)  (isChild *y *x),

C14: (pat po), (prob io)  (pat oe)

C15: (pat th), (prob io)  (pat po)

C16: (pat th), (prob oe)  (pat po)

C19: (pat po), (prob io) 

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

Tadayuki Yoshida is a PhD candidate in
Faculty of Computer Science, Hokkaido

University. His research interests include

program generation and computation based on
equivalent transformation.

2015 Engineering and Technology Publishing 245

Journal of Industrial and Intelligent Information Vol. 3, No. 3, September 2015

