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Abstract—Diagnosis of mechanical faults in rotating 

structures is a challenging and complex task, especially in the 

presence of multiple interacting components like gearboxes in 

machines, and huge background noise. In this paper, a novel 

gearbox fault diagnosis algorithm based on particle swarm 

optimization and band pass filtering is presented. Vibration 

signal acquired from gearbox is adaptively filtered through a 

band pass filter optimized by particle swarm optimization for 

extraction of faulty pulses buried in huge background noise. 

The effectiveness, feasibility and robustness of the proposed 

method are demonstrated on experimental data. The 

proposed method has successfully achieved reasonable speed 

up factor required for real-time applications and at the same 

time, the quality of the results is preserved.   

 
Index Terms—vibration measurement, structural health 

diagnostic, signal processing, band pass filters, particle 

swarm optimization. 

 

I. INTRODUCTION 

Gearbox is an inseparable part of a mechanical drive 

train in a rotating machine. Gearbox transfers speed and 

torque from one shaft to another. An early diagnosis of 

gearbox faults in rotating machines is an important task to 

avoid serious breakdown and to prevent loss of production. 

Vibration based analysis technique is one of the most 

commonly used techniques to monitor gearboxes. It is 

non-destructive, reliable and permits continuous 

monitoring of machines [1]. When a fault arises in a 

gearbox, the amplitude of the vibration signal emanating 

from the gearbox is increased. The vibration signal exhibits 

an increase in the amplitude in a specific region of its 

spectrum. With suitable vibration analysis, it is possible to 

detect faults in gearboxes and make appropriate structural 

health related decisions.   

In the past, a variety of vibration based analysis 

techniques were used for diagnosis and early detection of 

faults in gearboxes [2]-[4]. In [5] a gearbox based 

electromechanical system is analyzed using torsional 

vibration analysis. A packet wavelet analysis (WA) method 

is proposed in [6], where authors use WA to extract faulty 

information from vibration signals emanating from a 

helicopter's gearbox. In [7] a reciprocating compressor 

coupled with alternating current (AC) induction motor is 

analyzed through torsional vibration analysis.   
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Vibration based methods for fault detection can be 

classified into two groups. The grouping is based on the 

nature of the incoming signals, categorized as stationary 

and non-stationary. Statistical properties of the 

non-stationary signals change over time and hence, the 

features extraction methods should account for time 

resolution. On the contrary, stationary signals do not 

change their statistical properties over time. Therefore, the 

features extraction methods for these signals differ in 

nature. Methods like short time Fourier transform (STFT) 

and WA falls into the domain of non-stationary signals. 

Whereas, analysis of stationary signals include spectrum, 

cepstrum and other statistical and model based methods.  

This paper uses the vibration analysis method combined 

with nature inspired optimization framework to detect 

faults in gearboxes of machines. Biologically inspired 

optimization methods have been successfully applied in 

different fields of scientific computing and became a 

formal area of study in computer science as soft computing. 

The extraordinary complexity of the natural world 

provides us with remarkably robust and well-designed 

optimization frameworks [8]. Many different organisms in 

nature have a natural tendency to form swarms, for instance, 

birds and fish. Swarming behavior is so prevalent in nature. 

The global optimization problem is flourished by these 

nature-inspired techniques, such as ant colony 

optimization, genetic algorithms (GAs), simulated 

annealing, genetic programming (GP) and others [9], [10]. 

Particle swarm optimization (PSO) is yet, another type 

of nature-inspired technique that works on population 

based stochastic optimization principle. PSO was first 

proposed by Kennedy and Eberhart in 1995 [11]. As 

compared to other evolutionary population based 

algorithms like GA, PSO has an advantage of being simple 

in implementation, faster convergence and fewer 

parameters [12], [13]. Researchers have proposed different 

variants of PSO with random inertia weights, periodic and 

adaptive mutation strategies, genetic mutation operators 

and neural networks in order to increase the convergence 

performance and to avoid local minima [14], [15]. 

Many researchers have investigated the implementation 

of PSO for fault diagnosis of machines. In [16], PSO in 

conjunction with exact WA and support vector machine 

(SVM) classifier is used for fault detection in the gearbox. 

In [17], PSO is used to calculate an optimal placement of 

vibration sensor for fault detection in gearbox. Another 
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interesting research on fault diagnosis in gearbox based on 

PSO optimization is presented in [18], where PSO is used 

to train back propagation neural networks (NN). The 

method increases the convergence speed of the NN and 

avoids getting stuck in local extremum. Although, the 

computational complexity of PSO is not suitable for real 

time applications, the process can be modified to speed up 

the convergence.  

One of the main contributions of this paper is a 

combination of two different techniques to speed up the 

optimization process. We use Brent's method to reduce the 

solution search space and give an advantageous start to 

PSO in order for PSO to converge faster. Another method 

we use is an inclusion of a squared penalty in the objective 

function that makes unfit or bad swarms worse and avoids 

them to be followed by others.  

The rest of the paper is organized as follows. In Section 

II, we discuss the basics of the proposed methodology. We 

first describe the transient nature of the faulty signals 

emanating from rotating machines. We then present a PSO 

optimization paradigm along with Chebyshev band pass 

filtering. Section III discusses the nature of the fault we are 

trying to detect in this study. The feasibility of the 

proposed methodology is demonstrated in Section IV 

through simulations on experimental vibration signals 

emanating from gearboxes present in mechanical drive 

trains of rotating machines. Finally, we conclude our study 

in Section V. 

II. THE METHODOLOGY 

Transients are short duration pulses present in vibration 

signals emanating from faulty or cracked mechanical 

structures [19]. The duration of these transients, in the time 

domain, usually lasts 1-10 msec. In the frequency domain, 

transients are spanned over a wide bandwidth. The 

amplitude and slope of these transient pulses represent the 

severity of the faults. 

 

Figure 1. Flowchart of the proposed method - PSO adaptive filtering. 

The proposed method is shown in Fig. 1. After data 

acquisition and conditioning, the method uses Chebyshev 

band pass filtering along with PSO. The PSO optimizes the 

parameters of the band pass filters to maximize an 

objective function based on kurtosis.  

In the PSO optimization process, we use Brent's method 

to optimize one of the main parameters of the Chebyshev 

band pass filter and then initialize the PSO along with 

suitable ranges of all the parameters. This step gives an 

advantageous start to the PSO and at the same time reduces 

the search space for the PSO. Consequently, the PSO 

converges in less time.  

As indicated above, kurtosis is used as an optimization 

cost function or an objective function to be maximized. 

The objective function also makes use of penalty functions 

in order to speed up the convergence performance. The 

PSO optimization paradigm combined with the Chebyshev 

band pass filtering provides enough information and 

reasonable detection of transients for features extraction 

and fault classification in a reasonable amount of time.  

A.  Band Pass Filtering 

A band pass filter is designed and the PSO tunes its 

parameters. Fig. 2 shows different design parameters for a 

typical band pass filter. We design a Chebyshev band pass 

filter because of its speed as it is carried out by recursion 

rather than convolution. The Chebyshev band pass filter 

applies a mathematical strategy to achieve a faster roll off 

by allowing ripples in the frequency response. Here, we 

will design only type1 Chebyshev filter by allowing ripples 

only in the pass band. We control four parameters, centre 

frequency cF , quality factor Q , filter order N  and pass 

band ripples 
pR . 

 

Figure 2. The band pass filter. 

B.  The Brent's Method 

The Brent's method was proposed by Richard Brent in 

1973 [20]. The Brent's method uses a hybrid approach of 

speedy, open methods and reliable bracketing methods to 

speed up the convergence for one dimensional search 

problems. We use a combination of golden section 

bracketing method and quadratic interpolation to search 

for an optimum point over the objective function for at 

least one major parameter that influences more in 

convergence, cF for band pass filter in our case. In golden 

section search, four carefully spaced points are iteratively 

considered as shown in Fig. 3. 

 

Figure 3. The golden section search. 
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where 0.618   is the golden ratio and 

( 1 5) 2    . Although, the golden section search 

algorithm is reliable, but it is slow and the narrowing of the 

interval containing optimum requires considerable 

computation. We combine quadratic fit search with golden 

section search for rapid convergence taking full advantage 

of three point pattern fit. We fit a quadratic function 
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The algorithm starts with golden section search and 

calculates four points 
( ) (1) (2) ( )

( , , , )
lo hi

x x x x . It then 

determines the search direction (right or left) and fits a 

quadratic function with either 
( ) (1) (2)

( , , )
lo

x x x  or 

(1) (2) ( )
( , , )

hi
x x x . It calculates the quadratic fit 

( )q
x  from 

(2) and again applies golden section search to discard one 

point and so on. The combination of parabolic 

interpolation and golden section bracketing methods can 

speed up the optimal search process by 35-40% as 

compared to golden section bracketing only [20].  

C.  Particle Swarm Optimization (PSO) 

PSO is a population based stochastic optimization 

technique. PSO was first proposed by Kennedy and 

Eberhart in 1995 [21]. PSO mimics the social behavior of 

birds and fish schooling. Similar to other population based 

stochastic optimization techniques, like GA, PSO starts 

with a population of random solutions and eventually 

converges to find an optimal solution. The population in 

PSO consists of particles that fly in n-dimensional solution 

search space and follow the position of the best particle. 

Each particle in the solution search space is described by 

its position vector 
i

x  and velocity vector 
i

v . The velocity 

and position update equations of the PSO are 
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where 
i

p is the best position of each particle, 
g

kp  is the 

global best position of a particle in the swarm. The 

constants 1c and 2c  are self-confidence factor and swarm 

confidence factor respectively. The value of 1c  and 2c is 

normally taken in the range [0 1] . The parameters 1r and 

2r are randomly generated and uniformly distributed in the 

range [0 1] . This avoids any entrapment in a local 

optimum and provides good coverage of the solution 

search space. The time step is t and can be taken as 1. In 

(3), w is inertia weighting and is usually a linear 

descending function as 

 max max min

max

.
T

w w w w
T

                   (4) 

where T  and 
max

T  are current and maximum iteration 

respectively. Each particle's best position is evaluated 

through a fitness function as described in next sub-section.    

D.  Objective Function 

The objective function or fitness function used for the 

PSO optimization is maximization of kurtosis. Kurtosis is 

the degree of peakedness of a distribution, defined as a 

normalized form of the fourth central moment 4  
of a 

distribution. Kurtosis is defined as 
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Here, min max    and min maxa a a   are the 

constraints on the shape parameter   and the scale 

parameter a for the wavelet filter. Similar constraints can 

be defined for the band pass filter. We use penalty method 

and drop constraints of non-linear objective function by 

substituting new terms in the objective function penalizing 
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The new unconstrained objective function becomes 
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As an example, if the constraints min max    and 

min maxa a a   get satisfied, the 
 
part in (8) becomes 

zero, and if the constraints are not satisfied, a squared 

penalty is subtracted from the objective function that 

restricts the objective function to be maximized. This step 

also makes unfit swarms in the population worse so that 

they should fly in a different direction or towards more fit 

swarms. The inclusion of penalty functions in the objective 

function makes the population converge soon. 

III. NATURE OF FAULTS 

The types of faults we target in this study are gears tooth 

breakage due to bending fatigue and gears scuffing. The 

tooth of breakage generally originates from a crack in the 

root section of the gear tooth. Consequently, the whole 

tooth or a part of the tooth breaks away. Excessive tooth 

loads, cyclic stressing and ageing are the most common 

causes of the tooth breakage. When gears are loaded in this 

manner and subjected to enough repeated stress cycles, the 

gears teeth fail. Gear scuffing is characterized by material 

transfer between sliding tooth surfaces. Generally this 

condition occurs when inadequate lubrication film 

thickness permits metal-to-metal contact between gear 

teeth. Cracks, breakage and scuffing on gears teeth can be 

monitored through their gear mesh frequency. Gear mesh 

frequency or tooth mesh frequency is the frequency at 

which gears teeth meet together in the gearbox. Gear mesh 

frequency always exhibits a strong vibration component. 

An accurate evaluation of meshing stiffness between two 

gears can give an indication of fault present at the meshing 

frequency early in time.  

IV. SIMULATIONS AND DISCUSSIONS 

The vibration data used in this research are taken from 

National Renewable Energy Laboratory (NREL) in the 

USA, through a consortium called the Gearbox Reliability 

Collaborative (GRC) [22]. The data emanate from a 

planetary gearbox inside a windmill. The gearbox under 

test is one of two units taken from the field and redesigned, 

rebuilt and instrumented with over 125 sensors. The 

gearbox first finished its run-in in the NREL dynamometer 

test facility (DTF) and later was sent to a wind plant close 

to NREL for field test, where two oil losses occurred. The 

test turbine in the field is a stall-controlled, three-bladed, 

upwind turbine with a rated power of 750kW. The turbine 

generator operates at 1200 RPM and 1800 RPM nominal 

on two different sets of windings depending on the power. 

The planetary gearbox has an overall ratio of 1:81.491. It is 

composed of one low speed (LS) planetary stage and two 

parallel stages as shown in Fig. 4. This study uses data from 

a test case with main shaft speed of 14.72 RPM and high 

speed shaft (HSS) speed of 1200 RPM. The data are 

collected for the duration of 10 minutes at the sampling 

frequency of 40KHzsF  .  

 

Figure 4. (a) GRC Drive train configuration (b) Planetary gearbox (c) 

Sensor locations. (courtesy of national renewable energy laboratory) 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure. 5. The Chebyshev band pass filter optimized by the PSO. 

A.  Chebyshev Band Pass Filter Optimized by the PSO 

In this section, we discuss the application of the 

Chebyshev band pass filter optimized by the PSO. Fig. 5(a) 

shows one of the vibration signals recorded. A band pass 

filter is initialized, and the PSO optimizes the filter 

parameters to maximize the objective function. At first, we 

use the Brent's method to search for the filter's centre 

frequency cF  that maximizes the objective function. The 

other filter parameters like quality factor Q , filter order 

N  and pass band ripples 
pR

 
are kept constant at values 

0.707Q  , 4N   and 1pR  . Fig. 5(b) gives an idea 

where the kurtosis maximization occurs at 4.85 for 

527cF  Hz, found by the Brent's method. We then 

initialize the PSO search for the filter parameter ranges, 

200 100cF  Hz, 0.5 2Q  , 2 8N   and 

1 6pR  . The PSO parameters used in this search are 

shown in Table I.  We see that the PSO maximizes the 

kurtosis to 5.18 with 420.40cF  Hz, 0.54Q  , 3N   

and 2.99pR  . Fig. 5(c) plots kurtosis against cF  and Q . 

In Fig. 5(c), it is evident that the kurtosis maximization 

occurs in the range of 300 400cF  Hz and 

0.4 0.6Q  . Fig. 5(d) plots the final filtered vibration 

signal with kurtosis value equal to 5.18 and faulty pulses 

are clearly visible. As shown in Table I that the PSO uses 

five swarm particles, Fig. 6 plots the slowest particle's 

(particle 4) best position versus iterations. It is shown in 

Fig. 6 that particle 4 reaches the optimum point in 80 

iterations and thus making the whole population converge 

after 80 iterations.  

TABLE I PSO PARAMETERS  

Parameter Value 

No. of iterations 100 

No. of swarm particles 5 

Inertia weight w  0.9 to 0.4 

Self confidence factor 
1

c  1.4961 

Swarm confidence factor 
1

c  1.4961 

Parameters 
1
r and 

2
r  rnd[0 1]  

Threshold for success  0.0001 

 

 

Figure 6. Swarm particle 4 local best positions. 

 

Figure 7. Severe scuffing on the high speed pinion. (courtesy of national 

renewable energy laboratory) 

The band pass filter has four parameters to be optimized 

by the PSO, cF , Q , 
pR and N . It takes 16.64 seconds 

for PSO to converge on Intel Core i5 with 4GB of RAM. 

The band passed signal reaches the kurtosis value of 5.18. 

Since, a noisy signal emanating from a healthy machine 

follows Gaussian distribution and kurtosis of Gaussian 

distributed signal is 3.0, the value of 5.18 does not indicate 

severe faults on the gears. It could be scuffing on the gears’ 

surfaces but not the breakage. A visual inspection of the 
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gearbox proves the hypothesis of scuffing as shown in Fig. 

7. 

V. CONCLUSION 

In this paper, a PSO optimized adaptive filtering method 

is proposed for gearbox fault detection in rotating 

structures of electromechanical machines. The method 

demonstrates reasonable computational complexity and 

improves response time, which proves its applicability for 

real time fault detection. The method is verified on 

experimental data.  Many authors have proposed 

modifications in the PSO to increase the convergence 

speed or to avoid local minima and stagnation. In our 

proposed method, we increased the convergence speed of 

the PSO by two techniques, reducing the solution search 

space and adding penalty methods in the objective function. 

The proposed method will be used to extract any possible 

fault emanating from different mechanical structures inside 

the electric machines at different time stamps and in 

different frequency regions. 
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