Local Search Algorithms for Vehicle Routing Problems of a Chain of Convenience Stores

Yuwadee Prakaiphetkul and Pisut Pongchairerks
Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand
Email: {pr.yuwadee_st, pisut}@tni.ac.th

Abstract—This paper considers a generalized vehicle routing problem in a real application of a chain of convenience stores. The problem is to find the best truck routes, based on bi-criteria, for distributing a variety of products from a distribution center to convenience stores by using non-identical trucks. The distances between two places are asymmetric. This paper proposes multiple local search algorithms. Some of them use single neighborhood structure and some use double neighborhood structures. The aim of this paper is to find the local search algorithm with the specific neighborhood structure that performs very well for the generalized vehicle routing problem proposed in this paper.

Index Terms—bi-criteria optimization problem, local search algorithm, neighborhood structure, vehicle routing problem

I. INTRODUCTION

Vehicle routing problem is one of the most popular problems in the field of logistics and supply chain management. This is because this problem is often found in industries and services and it is also the heart of the way to minimize cost as well as maximize customer satisfaction. The classical vehicle routing problem, called VRP, is very simple to understand but very hard to solve to optimality. VRP starts with one depot and a fixed number of customers. Each customer is visited once by exactly one vehicle. The problem is to find the shortest vehicle routes used by identical vehicles to deliver the identical products to the customers. The loading capacity of each vehicle is limited and predefined; the demands of each customer are also predefined. Usually, VRP is very practical in many situations. However, each enterprise has its own managerial way to deliver the materials, products, people, and so on; thus, each enterprise may have its own VRP which differs from the model of the classical problem.

This paper presents a generalized vehicle routing problem simulated based on the real application of a chain of convenience stores. In this problem, the products have to be supplied from a distribution center to a number of convenience stores. An interesting point of the problem is that the distribution center does not have its own trucks, so that the distribution center has to employ a subcontractor, which has a number of trucks, to deliver the products for it. Thus, the distribution center attempts to minimize the cost of employment while the subcontractor attempts to minimize the total distances. Beyond that, the problem presented in this paper is from the real problem so that its model is more complicated than the classical problem, such as asymmetric distances, non-identical trucks, non-identical products, etc.

To solve the generalized vehicle routing problem given above, this paper proposes nine local search algorithms developed based on the well-known neighborhood structures such as the swap structure, the insert structure, the reverse structure. These nine local search algorithms consist of three single-phase local search algorithms using single neighborhood structure and six double-phase local search algorithms using double neighborhood structures.

II. LITERATURE REVIEW

As presented in Section I, the classical vehicle routing problem or VRP expressed in 1959 by [1] may not be practical for some enterprise’s real applications. Hence, the researchers have been developed many variants of VRP to cope with the real problems which have specific conditions. Below shows some well-known variants of VRP:

1) Vehicle routing problem with delivery and pick-up, or VRPPD, is the VRP in that a number of products have to be moved from the pick-up locations to other delivery locations, see [2].
2) Vehicle routing problem with time windows, or VRPTW, is the VRP whose customers have time windows within the visits must be done, see [3].
3) Vehicle routing problem with split deliveries, or VRPSD, is the VRP where each customer can be served by more than one vehicle, see [4].
4) Vehicle routing problem with time windows and split deliveries, also known as VRPTWSD, is the VRPTW where each customer can be served by more than one vehicle, as shown in [5].
5) Open vehicle routing problem, also called OVRP, is the VRP where vehicles may not return to the depot, as shown in [6].

Note that there are many other variants of VRP given in literature. In the last fifty years, researchers have attempted to solve VRP by using many different methods which can be classified into three categories:

1) Exact algorithms which guarantee finding the optimal solution such as branch-and-bound algorithm
presented by [7] and branch-and-cut algorithm presented by [8].

2) Problem-based heuristics which is the simple heuristics, some of them can compute by hand easily such as nearest neighbor algorithm shown in [9], and saving algorithm presented by [10].

3) Meta-heuristics which use a higher-level procedure to find generate or select a lower-level procedure that may return a good solution such as tabu search presented by [11] and genetic algorithm presented by [12].

The local search algorithms proposed in this paper are developed based by the swap, insert, and reverse structures, as expressed in [13]. The concept of double-phase local search algorithms proposed in this paper is similar to the concept of variable neighborhood search algorithm [14] in the way to improve the search performance using multiple neighborhood structures. However, the algorithms proposed in this paper are simpler.

III. PROBLEM DESCRIPTION

This paper proposes a generalized VRP simulated by the real application model from a chain of convenience stores managed by a company. This problem states with one distribution center and a fixed number of convenience stores. The company needs to distribute a variety of products from the distribution center to the convenience stores. The company however does not have its own trucks; therefore, it has to pay a lump-sum payment per each trip of a truck for a subcontractor to deliver the products. The subcontractor is the owner of all trucks which may have the different maximum loading capacities based on their sizes. The loading capacity is measured in units of cubes. Each truck must start its trip from the distribution center and end its trip at the distribution center; each truck can be used for more than one trip. Although there are many kinds of products, the products can be packed altogether into a package in units of cubes. Thus, the demands of each convenience store are also measured in units of cubes. The distances from the distribution center to each convenience store in forward direction and in backward direction may be different. As well, the distances between two convenience stores in the opposite directions may be different.

More about this proposed problem, the lump-sum amount per one trip of a truck paid from the company to the subcontractor does not depend on the distance, but depend on these two criteria:

1) Area zone of the convenience stores served by the truck in each trip
2) Truck size

The calculation of the lump-sum amount per trip just mentioned is expressed by these following case examples, using the data from the appendices. For example, if a big-size truck is assigned for the stores 31, 125 and 134 all located in the area’s zone A, the company has to pay for 652 Bath for this trip. If another trip of a truck has to serve the zone A’s stores 145, 190 and 245, the company will pay equally 652 Bath without considering about the distances. However, if a small-size truck is assigned to serve the zone A’s stores, the company has to pay only 291 Bath. In cases that the convenience stores from two different area zones will be served by one trip of a truck. The company does not need to pay the sum of the two lump-sum amounts; the company just needs to pay the highest lump-sum amount for this trip. For example, if a big-size truck has been assigned to deliver the products for Stores 31, 125 and 134 in zone A and also for Store 54 in zone B, then, as the service charge rate for zone A is 652 Bath and that for zone B is 843 Bath, the company has to pay only 843 Bath for this trip, not 1,495 Bath.

The problem objective is to find the truck routes consuming the lowest total lump-sum amounts, and using the shortest total transportation distances as well. Thus, this problem is a bi-criteria optimization problem because some truck routes consuming the low total lump-sum amounts may use the high total transportation distances, and vice versa.

IV. MAPPING PROCEDURE

For the problem instances of \(n \) convenience stores, indexing from 1 to \(n \), and \(m \) trucks, indexing from 1 to \(m \), the priority of selecting the truck to distribute the products for each trip is given as follows. The trucks that have never been used for any trip will have higher priority for selecting to use than the trucks that have already been used for one trip, the trucks that have already been used for one trip will have higher priority for selecting to use than the trucks that have already been used for two trips, and so on. For two trucks that have been equally used in the number of trips, the bigger-size truck, i.e. the truck that has the higher maximum loading capacity, has the higher priority than the smaller-size truck. For two same-size trucks that have been equally used in the number of trips, the truck of the lower index number has the higher priority.

Now, the mapping procedure is given as follows. For the problem instances of \(n \) convenience stores and \(m \) trucks, the set of truck routes, as a problem solution, is represented by a permutation of \(n \) integer numbers starting from 1 to \(n \). Each integer number appears in the permutation exactly once. The interpretation of the permutation is given as follows. Each integer number appears in the permutation represents the index number of each convenience store, i.e. ‘1’ represents store 1. The order of appearance of each store’s index number in the permutation represents the priority of the store for the order of delivery. The leftmost store’s index number represents the store which has the highest priority to select for delivery; the second leftmost store’s index number represents the store which has the second highest priority to select for delivery; and so on. For example, the permutation (1, 3, 2, 5, 4) means than the convenience stores can be arranged from the highest priority to the lowest priority as follows: store 1, store 3, store 2, store 5 and then store 4. This mapping procedure can be found in [15].

The process of generating the truck routes based on the predefined truck priorities and store priorities is given
below. Note that every truck must start its trip at the
distribution store only.
1) Assign the highest-priority truck to use in the current
single round-trip.
2) The current single round-trip can be constructed as
follows.
2.1) Start the round-trip of the truck selected in step 1
from the distribution center.
2.2) Select the highest-priority convenience store from
all unvisited stores that has the demands (in cubes)
less than the remaining loading capacity of the truck
(in cubes); assign the truck to serve this just
selected convenience store and the remaining
loading capacity of this truck is then reduced by
the demands of the just visited store.
2.3) Repeat from step 2.1 until there are no any
unvisited convenience store from all n stores that
has the demands less than the remaining loading
capacity of the truck. Then let the truck go back to
the distribution center. This round-trip is now
finished.
3) Repeat from step 1 for the next trip until the products
have been delivered to all convenience stores
successfully.

V. PROPOSED ALGORITHMS

This paper proposes multiple local search algorithms
based on different neighborhood structures, i.e. swap,
insert and reverse. To generate a neighborhood
permutation S_1 of a permutation S in the swap structure,
the algorithm will randomly select two integer numbers
from S and then swap the positions of these two integer
numbers in the permutation. Let $S_1 = \text{swap}(S)$ present that
S_1 is a neighborhood permutation of S in the swap structure.

In the insert structure, to generate a neighborhood
permutation S_1 of a permutation S, the algorithm will
randomly select two integer numbers from S and then
move the second selected integer number to the position
in front of the first selected integer number. Let $S_1 = \text{insert}(S)$ present that S_1 is a neighborhood permutation
of S in the insert structure.

In the reverse structure, to generate a neighborhood
permutation S_1 of a permutation S, the algorithm will
randomly select two integer numbers from S and then all
integer numbers located between these two integer
numbers including themselves will be relocated in the
reverse positions. That is, the leftmost number will be the
rightmost number; the second leftmost number will be the
second rightmost number; and so on. Let $S_1 = \text{reverse}(S)$
present that S_1 is a neighborhood permutation of S in the
reverse structure.

Let the local search algorithm using the swap structure,
the local search algorithm using the insert structure, and
the local search algorithm using the reverse structure are
called the S algorithm, the I algorithm, and the R
algorithm, respectively. Algorithm 1 given below
presents the steps of the S algorithm. T is the maximum
number of neighbors of which the algorithm can be used
for each solution.

Algorithm 1, as the steps of the S algorithm, is given
below.
1) Generate the initial permutation S_0 randomly.
2) Let $t = 0$.
3) Generate a neighborhood permutation $S_1 = \text{swap}(S_0)$.
If the truck routes given from S_1 returns the lower
total lump-sum amounts as well as the lower total
transportation distances than the truck routes given from
S_0, then assign $S_0 = S_1$ and repeat from step 2;
otherwise, $t = t + 1$ and repeat from step 3 until $t = T$
then stop the algorithm. The S_T is the best solution
found by the algorithm after it is stopped.

The steps of the I algorithm are easily developed by
replacing $S_1 = \text{swap}(S_0)$ in step (3) of Algorithm 1 by $S_1 = \text{insert}(S_0)$. The steps of the R algorithm are developed by
replacing $S_1 = \text{swap}(S_0)$ in step (3) of Algorithm 1 by $S_1 = \text{reverse}(S_0)$.

This paper then develops the six double-phase local
search algorithms. The S-I algorithm uses the swap
structure in phase 1 and then the insert structure in phase
2. The S-R algorithm uses the swap structure and then
the reverse structure, the I-S algorithm uses the insert
structure and then the swap structure, the I-R algorithm
uses the insert structure and then the reverse structure,
the R-S algorithm uses the reverse structure and then
the swap structure, and the R-I algorithm uses the reverse
structure and then the insert structure. Algorithm 2
presents the steps of the S-I algorithm.

Algorithm 2, as the steps of the S-I algorithm, is given
below.
1) Generate the initial permutation S_0 randomly.
2) Let $t = 0$.
3) Generate a neighborhood permutation $S_1 = \text{swap}(S_0)$.
If the truck routes given from S_1 uses lower total
lump-sum amounts and lower total transportation
distances than the truck routes given from S_0 and ,
then $S_0 = S_1$ and repeat from step (2); otherwise, $t = t + 1$ and repeat from step (3) until $t = T_1$ then go to
step (4).
4) Let $t = 0$.
5) Generate a neighborhood permutation $S_1 = \text{insert}(S_0)$.
If the truck routes given from S_1 uses lower total
lump-sum amounts and lower total transportation
distances than the truck routes given from S_0 and ,
then $S_0 = S_1$ and repeat from step 4; otherwise, $t = t + 1$ and repeat from step 5 until $t = T_2$ then step the
algorithm. The S_T is the best solution found by the
algorithm after it is stopped.

The steps of the other double-phase local search
algorithms can be developed by changing some parts of
Algorithm 2 as follows.
1) The S-R algorithm is developed by replacing $S_1 = \text{insert}(S_0)$ with $S_1 = \text{reverse}(S_0)$ in step 5.
2) The I-S algorithm is developed by replacing $S_1 = \text{swap}(S_0)$ with $S_1 = \text{insert}(S_0)$ in step 3 and also
replacing $S_1 = \text{insert}(S_0)$ with $S_1 = \text{swap}(S_0)$ in step 5.
3) The I-R algorithm is developed by replacing $S_1 = \text{swap}(S_0)$ with $S_1 = \text{insert}(S_0)$ in step 3 and also
replacing $S_1 = \text{insert}(S_0)$ with reverse(S_0) in step 5.
4) The R-S algorithm is developed by replacing $S_1 = \text{swap}(S_0)$ by reverse(S_0) in step 3 and replacing $S_1 = \text{insert}(S_0)$ by swap(S_0) in step 5.

The R-I algorithm is developed by replacing $S_1 = \text{swap}(S_0)$ by $S_1 = \text{reverse}(S_0)$ in step 3.

VI. EXPERIMENTS AND RESULTS

This paper generates the three problem instances based on the real data. However, to protect the company’s confidential data, all the distances, the lump-sum amounts paid for the service zones, and the store’s demands of the company’s data are multiplied by confidential numbers and are then used as the data for the problem instances in this paper. These three problem instances use the same data, excepting the data of demands. The high-season problem instance, the medium-season problem instance and the low-season problem instances are generated by using the data collected in the high season, the medium season and the low season, respectively. For all three problem instances, the subcontractor has 145 trucks, 65 trucks of them are the small-size trucks which have the maximum loading capacity of 5.5 cubic, and 80 trucks of them are the big-size trucks which have the maximum loading capacity of 10 cubic; the company has one distribution center and 896 convenience stores. The data about distances (in km), convenience store demands (in cubes), area zones and their involved lump-sum amounts (in Bath) are given in appendixes. The convenience stores with demands of 0 cubes means that they have no demands at the day of collected data, but the truck is still required to visit there to submit some small documents or letters.

To compare the performance of the proposed algorithms on the problem, all algorithms are coded from C# program under Windows and they are executed by a 1.75 GHz AMD E2-2000 APU processor. Each algorithm will be repeated thrice with different initial solutions on each problem instances. For the single-phase local search algorithms, the maximum number of neighbors of each solution $T = n(n - 1) + 2$. This value is used because it is the number of all outcomes of selecting two integer numbers from n integer numbers in the permutation S. For the double-phase local search algorithms, the maximum number of neighbors of each solution for the first phase $T_1 = n(n - 1) + 4$ and the maximum number of neighbors of each solution for the second phase $T_2 = n(n - 1) + 4$. This value makes $T_1 + T_2 = T$ and results in the fair comparisons in the computational times.

The problem proposed in this paper has bi-criteria, i.e. the total lump-sum amounts of which the company has to pay the subcontractor and the total distances of which the subcontractor’s truck is used. In order to combine the two criteria into a single criterion, this paper transforms the total distances into the total gasoline fees by multiplying the gasoline fee per kilometer, i.e. 0.75 Bath; then, the new single criterion is the summation of the lump-sum amounts paid by the company and the total gasoline fees paid by the subcontractor. Note that the value of 0.75 is from the real gasoline fee per kilometer multiplied by the same confidential number used for the lump-sum amounts of the service zones.

A. Results from High-volume Instance

Table I shows the total lump-sum amounts (in Bath) of the truck routes given by the three runs of all algorithms on the high-volume instance. In the table, Best means the total lump-sum amounts of the best solution given by each algorithm. Based on the results shown in the table, The S algorithm performs best in the comparison, and the R-S algorithm is the second best algorithm in the comparison.

TABLE I. LUMP-SUM AMOUNTS ON HIGH-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>230,765</td>
<td>231,557</td>
<td>230,118</td>
<td>230,118</td>
</tr>
<tr>
<td>I</td>
<td>246,953</td>
<td>247,880</td>
<td>247,260</td>
<td>246,953</td>
</tr>
<tr>
<td>R</td>
<td>245,388</td>
<td>246,005</td>
<td>246,794</td>
<td>245,388</td>
</tr>
<tr>
<td>S-I</td>
<td>234,853</td>
<td>235,073</td>
<td>234,482</td>
<td>234,853</td>
</tr>
<tr>
<td>S-R</td>
<td>233,612</td>
<td>234,894</td>
<td>233,428</td>
<td>233,428</td>
</tr>
<tr>
<td>I-S</td>
<td>234,774</td>
<td>234,203</td>
<td>235,402</td>
<td>234,203</td>
</tr>
<tr>
<td>I-R</td>
<td>247,661</td>
<td>246,730</td>
<td>245,183</td>
<td>245,183</td>
</tr>
<tr>
<td>R-S</td>
<td>233,137</td>
<td>234,453</td>
<td>232,662</td>
<td>232,662</td>
</tr>
<tr>
<td>R-I</td>
<td>244,525</td>
<td>244,664</td>
<td>246,118</td>
<td>244,525</td>
</tr>
</tbody>
</table>

Later on, Table II shows the total distances (in km) consumed by the truck routes on the high-volume instance. In this table, Best is the total distances of the best solution found by each algorithm. The S algorithm performs best in the comparison, and the I-S algorithm is the second best algorithm in the comparison.

TABLE II. DISTANCES ON HIGH-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>216,504</td>
<td>215,070</td>
<td>211,212</td>
<td>211,212</td>
</tr>
<tr>
<td>I</td>
<td>231,217</td>
<td>227,124</td>
<td>227,803</td>
<td>227,124</td>
</tr>
<tr>
<td>R</td>
<td>227,397</td>
<td>229,914</td>
<td>230,338</td>
<td>227,397</td>
</tr>
<tr>
<td>S-I</td>
<td>220,013</td>
<td>218,410</td>
<td>219,099</td>
<td>218,410</td>
</tr>
<tr>
<td>S-R</td>
<td>219,878</td>
<td>216,933</td>
<td>218,056</td>
<td>216,933</td>
</tr>
<tr>
<td>I-S</td>
<td>212,678</td>
<td>213,746</td>
<td>222,156</td>
<td>212,678</td>
</tr>
<tr>
<td>I-R</td>
<td>228,895</td>
<td>227,004</td>
<td>225,379</td>
<td>225,379</td>
</tr>
<tr>
<td>R-S</td>
<td>214,340</td>
<td>221,400</td>
<td>225,076</td>
<td>214,340</td>
</tr>
<tr>
<td>R-I</td>
<td>228,940</td>
<td>230,537</td>
<td>224,521</td>
<td>224,521</td>
</tr>
</tbody>
</table>

TABLE III. SUMS OF COSTS ON HIGH-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>393,143</td>
<td>392,859</td>
<td>388,527</td>
<td>388,527</td>
</tr>
<tr>
<td>I</td>
<td>420,366</td>
<td>418,223</td>
<td>418,112</td>
<td>418,112</td>
</tr>
<tr>
<td>R</td>
<td>415,936</td>
<td>418,441</td>
<td>419,548</td>
<td>415,936</td>
</tr>
<tr>
<td>S-I</td>
<td>399,863</td>
<td>398,880</td>
<td>398,806</td>
<td>398,806</td>
</tr>
<tr>
<td>S-R</td>
<td>398,520</td>
<td>397,594</td>
<td>396,970</td>
<td>396,970</td>
</tr>
<tr>
<td>I-S</td>
<td>394,282</td>
<td>394,512</td>
<td>402,018</td>
<td>394,282</td>
</tr>
<tr>
<td>I-R</td>
<td>419,332</td>
<td>416,983</td>
<td>414,217</td>
<td>414,217</td>
</tr>
<tr>
<td>R-S</td>
<td>393,892</td>
<td>400,503</td>
<td>401,469</td>
<td>393,892</td>
</tr>
<tr>
<td>R-I</td>
<td>416,230</td>
<td>417,566</td>
<td>414,508</td>
<td>414,508</td>
</tr>
</tbody>
</table>

Table III presents the summations of the total lump-sum amounts paid by the distribution center and the total gasoline fees from the truck routes paid by the
subcontractor which are generated by the nine proposed algorithms.

In Table III, the S algorithm performs best in the comparison, and the R-S algorithm is the second best algorithm in the comparison. Although I-I performs very well in the total distances, it is the fourth in the lump-sum amounts; thus, the R-S algorithm wins the I-S algorithm well in the total distances, it is the fourth in the lump-sum comparison, and the R-S algorithm is the second best subcontractor which are generated by the nine proposed algorithms.

B. Results from Medium-volume Instance

Table IV presents the total lump-sum amounts (in Baht) of the truck routes on the medium-volume instance. Based on the results shown in the table, again, the S algorithm performs best in the comparison, and the R-S algorithm is the second best algorithm in the comparison.

Table V then shows the total distances (in km) used by the truck routes on the medium instance. The S algorithm is the highest performance algorithm and the S-R algorithm is the second best algorithm in the comparison.

C. Results from Low-volume Instance

Table VII provides the total lump-sum amounts (in Baht) of the truck routes given on the low-volume instance. Based on the results shown in the table, The S algorithm performs best and the R-S algorithm is the second in the comparison.

Table VIII shows the total distances (in km) consumed by the truck routes on the low-volume instance. The S algorithm is the best and the S-R algorithm is the second best in the comparison.

Table IX shows the summations of the total lump-sum amounts and the total gasoline fees from the truck routes generated by the algorithms. In this table, the S algorithm performs best in the comparison, and the S-R algorithm is the second best algorithm in the comparison. Although the R-S algorithm performs slightly better than the S-R algorithm in the criterion of the total lump-sum amounts, the S-R algorithm is better than the S-R algorithm in the combining criterion because the S-R algorithm performs much better than the R-S algorithm in the criterion of the total distances.

TABLE IV. LUMP-SUM AMOUNTS ON MEDIUM-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>204,576</td>
<td>204,368</td>
<td>204,313</td>
<td>204,313</td>
</tr>
<tr>
<td>I</td>
<td>221,683</td>
<td>222,546</td>
<td>221,840</td>
<td>221,840</td>
</tr>
<tr>
<td>R</td>
<td>219,670</td>
<td>219,925</td>
<td>220,164</td>
<td>219,670</td>
</tr>
<tr>
<td>S-I</td>
<td>208,464</td>
<td>210,020</td>
<td>210,009</td>
<td>208,464</td>
</tr>
<tr>
<td>S-R</td>
<td>207,358</td>
<td>206,863</td>
<td>209,732</td>
<td>206,863</td>
</tr>
<tr>
<td>I-S</td>
<td>209,823</td>
<td>208,489</td>
<td>208,989</td>
<td>208,489</td>
</tr>
<tr>
<td>I-R</td>
<td>221,699</td>
<td>221,061</td>
<td>222,125</td>
<td>221,061</td>
</tr>
<tr>
<td>R-S</td>
<td>206,535</td>
<td>208,101</td>
<td>206,651</td>
<td>206,535</td>
</tr>
<tr>
<td>R-I</td>
<td>216,506</td>
<td>222,035</td>
<td>219,287</td>
<td>216,506</td>
</tr>
</tbody>
</table>

Table VI shows the summations of the total lump-sum amounts from the truck routes given on the low-volume instance. Based on the results shown in the table, the S algorithm performs best, and the R-S algorithm is the second best in the comparison.

TABLE VI. SUMS OF COSTS ON MEDIUM-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>345,500</td>
<td>338,937</td>
<td>342,369</td>
<td>338,937</td>
</tr>
<tr>
<td>I</td>
<td>382,889</td>
<td>386,118</td>
<td>381,093</td>
<td>381,093</td>
</tr>
<tr>
<td>R</td>
<td>383,702</td>
<td>379,991</td>
<td>380,706</td>
<td>379,991</td>
</tr>
<tr>
<td>S-I</td>
<td>352,884</td>
<td>355,139</td>
<td>355,772</td>
<td>352,884</td>
</tr>
<tr>
<td>S-R</td>
<td>349,067</td>
<td>346,731</td>
<td>353,922</td>
<td>346,731</td>
</tr>
<tr>
<td>I-S</td>
<td>356,729</td>
<td>355,994</td>
<td>354,143</td>
<td>354,143</td>
</tr>
<tr>
<td>I-R</td>
<td>383,761</td>
<td>383,592</td>
<td>383,941</td>
<td>383,592</td>
</tr>
<tr>
<td>R-S</td>
<td>351,885</td>
<td>355,983</td>
<td>350,005</td>
<td>350,005</td>
</tr>
<tr>
<td>R-I</td>
<td>377,125</td>
<td>386,267</td>
<td>381,838</td>
<td>377,125</td>
</tr>
</tbody>
</table>

Table IX shows the summations of the total lump-sum amounts from the truck routes given on the low-volume instance. Based on the results shown in the table, the S algorithm performs best, and the R-S algorithm is the second best in the comparison.
performs best, and the S-R algorithm is the second best algorithm in the comparison. Again, although the R-S algorithm performs slightly better than the S-R algorithm in the criterion of the total lump-sum amounts, the S-R algorithm is better than the S-R algorithm in the combining criterion because the S-R algorithm performs much better than the R-S algorithm in the criterion of the total distances.

Based on the three problem instances’ results in Tables I, IV and VII, the S algorithm is the best algorithm and the R-S algorithm is the second best algorithm in the comparison of the total lump-sum amounts spent by the company. This paper then do the hypothesis test of H0: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the R-S algorithm is zero versus H1: the population mean of the differences is less than zero for the significance level of 0.10 by using Minitab. Hereafter, in all hypothesis tests on this paper, a best solution value means a best solution value taken from any three solutions. The Minitab program returns the p-value of 0.002; thus it concludes that the mean of the best solution values of the S algorithm is better than the mean of the best solution values of the R-S algorithm by the significance level of 0.10 in the criterion of the total lump-sum amounts.

In the comparison of the total distances of the truck routes spent by the subcontractor on the three problem instances based on data from Table II, V and VIII, the S algorithm is the best algorithm and the S-R algorithm is the second best algorithm in the comparison. This paper then do the hypothesis test of H0: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the S-R algorithm is zero versus H1: the population mean of the differences is less than zero for the significance level of 0.10 by using Minitab. The Minitab program returns the p-value of 0.05; thus it concludes that the mean of the best solution values of the S algorithm is better than the mean of the best solution values of the S-R algorithm by the significance level of 0.10 in the criterion of the total lump-sum amounts.

Based on the three problem instances’ results in Tables III, VI and IX, the S algorithm is the best algorithm and the S-R algorithm is the second best algorithm in the criterion of the sum of the total lump-sum amounts and the total gasoline fees. This paper then do the hypothesis test of H0: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the S-R algorithm is zero versus H1: the population mean of the differences is less than zero for the significance level of 0.10 by using Minitab. The Minitab program returns the p-value of 0.027; thus it concludes that the mean of the best solution values of the S algorithm is better than the mean of the best solution values of the R-S algorithm by the significance level of 0.10 in the combining criterion.

All proposed algorithms perform equally in terms of computational time consumption. Average computational time per run of each algorithm is given as follows: S algorithm uses 23 minutes, I algorithm uses 26 minutes, S-I algorithm uses 22 minutes, S-R algorithm uses 24 minutes, I-S algorithm uses 24 minutes, I-R algorithm uses 26 minutes, R-S algorithm uses 24 minutes and R-I algorithm uses 26 minutes.

Based on the experiment results, the S algorithm performs best both in the total lump-sum amounts paid by the company and the total distances consumed by the subcontractor. The R-S algorithm performs as the second-best in the objective function of total lump-sum amounts and the S-R algorithm performs as the second-best in the objective function of total distances.

VII. ADDITIONAL EXPERIMENTS

Based on the findings from Section VI, the S algorithm outperforms other algorithms when the single-phase algorithms use \(T = n(n - 1) + 2 \) and the double-phase algorithms use \(T_1 = T_2 = n(n - 1) + 4 \). However, it is possible that the results may change if \(T \) increases because the S algorithm may get stuck in the local optimum when \(T \) is increased. And it will open the change to the double-phase local search algorithms, e.g. the S-R algorithm and the R-S algorithm, to win the competition.

Thus, this section will run each of the S algorithm, S-R algorithm and R-S algorithm thrice on the three problem instances by using \(T = n(n - 1) \) for the S algorithm, and \(T_1 = T_2 = n(n - 1) + 2 \) for the S-R algorithm and the R-S algorithm. This section selects only the S-R and R-S algorithms to compare to the S algorithm because they perform well in all criteria. The results of total lump-sum amounts on the three instances are given in Tables X, XI and XII.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>226,406</td>
<td>226,856</td>
<td>226,694</td>
<td>226,406</td>
</tr>
<tr>
<td>S-R</td>
<td>230,623</td>
<td>228,345</td>
<td>231,033</td>
<td>228,345</td>
</tr>
<tr>
<td>R-S</td>
<td>230,726</td>
<td>230,164</td>
<td>227,982</td>
<td>227,982</td>
</tr>
</tbody>
</table>

TABLE XI. LUMP-SUM AMOUNTS ON MEDIUM-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>202,387</td>
<td>201,685</td>
<td>200,425</td>
<td>200,425</td>
</tr>
<tr>
<td>S-R</td>
<td>205,569</td>
<td>203,976</td>
<td>204,381</td>
<td>203,976</td>
</tr>
<tr>
<td>R-S</td>
<td>203,616</td>
<td>203,176</td>
<td>203,400</td>
<td>203,176</td>
</tr>
</tbody>
</table>

TABLE XII. LUMP-SUM AMOUNTS ON LOW-VOLUME INSTANCE

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>162,546</td>
<td>166,556</td>
<td>163,713</td>
<td>162,546</td>
</tr>
<tr>
<td>S-R</td>
<td>166,556</td>
<td>169,048</td>
<td>167,426</td>
<td>166,048</td>
</tr>
<tr>
<td>R-S</td>
<td>163,713</td>
<td>166,181</td>
<td>166,292</td>
<td>163,713</td>
</tr>
</tbody>
</table>

As shown in Tables X, XI and XII, the sample mean of the best solution values of S algorithm is the lowest, the R-S algorithm is the second best algorithm, and the S-R algorithm is worst in the competition. Then, this paper do the hypothesis test of H0: the population mean of the differences between the best solution values of the S
algorithm and the best solution values of the R-S algorithm is zero versus H1: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the R-S algorithm is less than zero, using the significance level of 0.1. The Minitab program returns the p-value of 0.031; thus, it concludes that the population mean of the best solution values of the S algorithm is the lowest, the sample mean of the best solution values of the S-R algorithm is the second lowest, and the sample mean of the best solution values of the R-S algorithm by the significance level of 0.10 in the criterion of the total lump-sum amounts.

Later on, the results of total distances generated by the three algorithms on the three instances are presented in Tables XIII, XIV and XV, respectively. Based on the data from these tables, the sample mean of the best solution values of the S algorithm is the lowest, the sample mean of the best solution values of the S-R algorithm is the second lowest, and the sample mean of the best solution values of the R-S algorithm is worst in the criterion of the total lump-sum amounts.

<table>
<thead>
<tr>
<th>TABLE XIII. DISTANCES ON HIGH-VOLUME INSTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>S-R</td>
</tr>
<tr>
<td>R-S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE XIV. DISTANCES ON MEDIUM-VOLUME INSTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>S-R</td>
</tr>
<tr>
<td>R-S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE XV. DISTANCES ON LOW-VOLUME INSTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>S-R</td>
</tr>
<tr>
<td>R-S</td>
</tr>
</tbody>
</table>

This paper do the hypothesis test of H0: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the S-R algorithm is zero versus H1: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the R-S algorithm is less than zero, using the significance level of 0.1. The Minitab program returns the p-value of 0.02; thus, it concludes that the mean of the best solution values of the S algorithm is less than zero using the significance level of 0.01. The Minitab program returns the p-value of 0.002. Thus, it concludes that the mean of the best solution values of the S algorithm is less than zero using the significance level of 0.1. The Minitab program returns the p-value of 0.481. Thus, it concludes that there is not different between the population mean of the best solution values of the S-R algorithm and that of the R-S algorithm with the significance level of 0.1. This shows that the S algorithm is the highest performing algorithm for all criteria.

In the comparison between the S-R algorithm and the R-S algorithm, the hypothesis test of H0: the population mean of the differences between the best solution values of the S-R algorithm and the best solution values of the R-S algorithm is zero versus H1: the population mean of the differences between the best solution values of the S-R algorithm and the best solution values of the R-S algorithm is less than zero, using the significance level of 0.01. The Minitab program returns the p-value of 0.813. The Minitab program returns the p-value of 0.02; thus, it concludes that the mean of the best solution values of the S-R algorithm is less than zero using the significance level of 0.01. The Minitab program returns the p-value of 0.031; thus, it concludes that the mean of the best solution values of the S-R algorithm is second lowest. For the hypothesis test of H0: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the S-R algorithm is zero versus H1: the population mean of the differences between the best solution values of the S algorithm and the best solution values of the R-S algorithm is less than zero using the significance level of 0.1 returns the p-value of 0.002. Thus, it concludes that the mean of the best solution values of the S algorithm is less than zero using the significance level of 0.1. This shows that the S algorithm is the highest performing algorithm for all criteria.

VIII. CONCLUSION
This paper introduces the generalized VRP with the bi-criteria. The VRP aims to deliver products from a distribution center to the convenience stores. However, the distribution center itself has no the trucks; thus, it uses the subcontractor to deliver its products. The distribution center has to pay the subcontractor trip-by-trip based on the service area’s zone traveled by a truck. This problem considers the criterion of the total lump-sum amount paid by the distribution center to the subcontractor and the criterion of the total distances used by the trucks of the subcontractor. To cope with the problem, this paper introduces the nine algorithms, i.e. the S algorithm, I algorithm, R algorithm, S-I algorithm, S-R algorithm, I-S algorithm, R-S algorithm, and R-I algorithm. These proposed algorithms are tested on the three problem instances, i.e. the high-volume instance, medium-volume instance and low-volume instance. The results of the experiments shows the S algorithm outperforms on all criteria.

APPENDIXES

The data of the problem instances used in this paper are shown in the three appendices, namely Appendixes A–C, which can be accessed online via the following link: https://drive.google.com/file/d/0B2XqS3TSsvP7UWg4d U51dEJOMFk/edit?usp=sharing. Appendix A provides the details of the distances between the distribution center and each convenience store, and the distances between two convenience stores. Appendix B provides the details of the demands of the convenience stores for the three problem instance. Appendix C provides the details of the area zones and the corresponding lump-sum amounts for the big-size trucks and the small-size trucks.

ACKNOWLEDGMENT

We would like to give special thanks to Mr. Adisak Anusornrirung for his technical support of debugging the computer programs of the algorithms.

REFERENCES

Yuwadee Prakaiphetkul is a master’s degree student of Master Program in Engineering Technology, B.Sc. in Applied Statistics from King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand. She works as MIS Logistics officer of convenience store business and worked as process engineer at Furukawa FITEL. Her thesis’s title is to develop the local search algorithms by using multiple neighborhood structures for a generalized vehicle routing problem in real world situations.

Piut Pongchaiyairks is an Assistant Professor in Production Engineering Program, Faculty of Engineering, Thai-Nichi Institute of Technology. He holds B.Eng. and M.Eng. in Industrial Engineering from Kasetsart University and D.Eng. in Industrial Engineering & Management from Asian Institute of Technology. His research interests focus on Operations Research, Production Planning and Control, Scheduling and Sequencing, Meta-heuristic algorithms for Optimization Problems, Logistics and Supply Chain Management, and Quality Control.