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Abstract—This paper considers a generalized vehicle 

routing problem in a real application of a chain of 

convenience stores. The problem is to find the best truck 

routes, based on bi-criteria, for distributing a variety of 

products from a distribution center to convenience stores by 

using non-identical trucks. The distances between two 

places are asymmetric. This paper proposes multiple local 

search algorithms. Some of them use single neighborhood 

structure and some use double neighborhood structures. 

The aim of this paper is to find the local search algorithm 

with the specific neighborhood structure that performs very 

well for the generalized vehicle routing problem proposed in 

this paper.  

 

Index Terms—bi-criteria optimization problem, local search 

algorithm, neighborhood structure, vehicle routing problem 

 

I. INTRODUCTION 

Vehicle routing problem is one of the most popular 

problems in the field of logistics and supply chain 

management. This is because this problem is often found 

in industries and services and it is also the heart of the 

way to minimize cost as well as maximize customer 

satisfaction. The classical vehicle routing problem, called 

VRP, is very simple to understand but very hard to solve 

to optimality. VRP starts with one depot and a fixed 

number of customers. Each customer is visited once by 

exactly one vehicle.  The problem is to find the shortest 

vehicle routes used by identical vehicles to deliver the 

identical products to the customers. The loading capacity 

of each vehicle is limited and predefined; the demands of 

each customer are also predefined. Usually, VRP is very 

practical in many situations. However, each enterprise 

has its own managerial way to deliver the materials, 

products, people, and so on; thus, each enterprise may 

have its own VRP which differs from the model of the 

classical problem.  

This paper presents a generalized vehicle routing 

problem simulated based on the real application of a 

chain of convenience stores. In this problem, the products 

have to be supplied from a distribution center to a number 

of convenience stores. An interesting point of the 

problem is that the distribution center does not have its 

own trucks, so that the distribution center has to employ a 

subcontractor, which has a number of trucks, to deliver 

the products for it. Thus, the distribution center attempts 
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to minimize the cost of employment while the 

subcontractor attempts to minimize the total distances. 

Beyond that, the problem presented in this paper is from 

the real problem so that its model is more complicated 

than the classical problem, such as asymmetric distances, 

non-identical trucks, non-identical products, etc. 

To solve the generalized vehicle routing problem given 

above, this paper proposes nine local search algorithms 

developed based on the well-known neighborhood 

structures such as the swap structure, the insert structure, 

the reverse structure. These nine local search algorithms 

consist of three single-phase local search algorithms 

using single neighborhood structure and six double-phase 

local search algorithms using double neighborhood 

structures. 

II. LITERATURE REVIEW 

As presented in Section I, the classical vehicle routing 

problem or VRP expressed in 1959 by [1] may not be 

practical for some enterprise’s real applications. Hence, 

the researchers have been developed many variants of 

VRP to cope with the real problems which have specific 

conditions. Below shows some well-known variants of 

VRP: 

1) Vehicle routing problem with delivery and pick-up, 

or VRPPD, is the VRP in that a number of products 

have to be moved from the pick-up locations to other 

delivery locations, see [2]. 

2) Vehicle routing problem with time windows, or 

VRPTW, is the VRP whose customers have time 

windows within the visits must be done, see [3]. 

3) Vehicle routing problem with split deliveries, or 

VRPSD, is the VRP where each customer can be 

served by more than one vehicle, see [4]. 

4) Vehicle routing problem with time windows and split 

deliveries, also known as VRPTWSD, is the 

VRPTW where each customer can be served by more 

than one vehicle, as shown in [5]. 

5) Open vehicle routing problem, also called OVRP, is 

the VRP where vehicles may not return to the depot, 

as shown in [6]. 

Note that there are many other variants of VRP given 

in literature. In the last fifty years, researchers have 

attempted to solve VRP by using many different methods 

which can be classified into three categories:  

1) Exact algorithms which guarantee finding the 

optimal solution such as branch-and-bound algorithm 
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presented by [7] and branch-and-cut algorithm 

presented by [8]. 

2) Problem-based heuristics which is the simple 

heuristics, some of them can compute by hand easily 

such as nearest neighbor algorithm shown in [9], and 

saving algorithm presented by [10]. 

3) Meta-heuristics which use a higher-level procedure 

to find generate or select a lower-level procedure that 

may return a good solution such as tabu search 

presented by [11] and genetic algorithm presented by 

[12].  

The local search algorithms proposed in this paper are 

developed based by the swap, insert, and reverse 

structures, as expressed in [13]. The concept of double-

phase local search algorithms proposed in this paper is 

similar to the concept of variable neighborhood search 

algorithm [14] in the way to improve the search 

performance using multiple neighborhood structures. 

However, the algorithms proposed in this paper are 

simpler. 

III. PROBLEM DESCRIPTION 

This paper proposes a generalized VRP simulated by 

the real application model from a chain of convenience 

stores managed by a company. This problem states with 

one distribution center and a fixed number of 

convenience stores. The company needs to distribute a 

variety of products from the distribution center to the 

convenience stores. The company however does not have 

its own trucks; therefore, it has to pay a lump-sum 

payment per each trip of a truck for a subcontractor to 

delivery the products. The subcontractor is the owner of 

all trucks which may have the different maximum loading 

capacities based on their sizes. The loading capacity is 

measured in units of cubes. Each truck must start its trip 

from the distribution center and end its trip at the 

distribution center; each truck can be used for more than 

one trip. Although there are many kinds of products, the 

products can be packed altogether into a package in units 

of cubes. Thus, the demands of each convenience store 

are also measured in units of cubes. The distances from 

the distribution center to each convenience store in 

forward direction and in backward direction may be 

different. As well, the distances between two convenience 

stores in the opposite directions may be different.  

More about this proposed problem, the lump-sum 

amount per one trip of a truck paid from the company to 

the subcontractor does not depend on the distance, but 

depend on these two criteria:  

1) Area zone of the convenience stores served by the 

truck in each trip 

2) Truck size  

The calculation of the lump-sum amount per trip just 

mentioned is expressed by these following case examples, 

using the data from the appendices. For example, if a big-

size truck is assigned for the stores 31, 125 and 134 all 

located in the area’s zone A, the company has to pay for 

652 Bath for this trip. If another trip of a truck has to 

serve the zone A’s stores 145, 190 and 245, the company 

will pay equally 652 Bath without considering about the 

distances. However, if a small-size truck is assigned to 

serve the zone A’s stores, the company has to pay only 

291 Bath. In cases that the convenience stores from two 

different area zones will be served by one trip of a truck. 

The company does not need to pay the sum of the two 

lump-sum amounts; the company just needs to pay the 

highest lump-sum amount for this trip. For example, if a 

big-size truck has been assigned to deliver the products 

for Stores 31, 125 and 134 in zone A and also for Store 

54 in zone B, then, as the service charge rate for zone A 

is 652 Bath and that for zone B is 843 Bath, the company 

has to pay only 843 Bath for this trip, not 1,495 Bath.           

The problem objective is to find the truck routes 

consuming the lowest total lump-sum amounts, and using 

the shortest total transportation distances as well. Thus, 

this problem is a bi-criteria optimization problem because 

some truck routes consuming the low total lump-sum 

amounts may use the high total transportation distances, 

and vice versa. 

IV. MAPPING PROCEDURE 

For the problem instances of n convenience stores, 

indexing from 1 to n, and m trucks, indexing from 1 to m, 

the priority of selecting the truck to distribute the 

products for each trip is given as follows. The trucks that 

have never been used for any trip will have higher 

priority for selecting to use than the trucks that have 

already been used for one trip, the trucks that have 

already been used for one trip will have higher priority 

for selecting to use than the trucks that have already been 

used for two trips, and so on. For two trucks that have 

been equally used in the number of trips, the bigger-size 

truck, i.e. the truck that has the higher maximum loading 

capacity, has the higher priority than the smaller-size 

truck. For two same-size trucks that have been equally 

used in the number of trips, the truck of the lower index 

number has the higher priority.  

Now, the mapping procedure is given as follows. For 

the problem instances of n convenience stores and m 

trucks, the set of truck routes, as a problem solution, is 

represented by a permutation of n integer numbers 

starting from 1 to n. Each integer number appears in the 

permutation exactly once. The interpretation of the 

permutation is given as follows. Each integer number 

appears in the permutation represents the index number 

of each convenience store, i.e. ‘1’ represents store 1. The 

order of appearance of each store’s index number in the 

permutation represents the priority of the store for the 

order of delivery. The leftmost store’s index number 

represents the store which has the highest priority to 

select for delivery; the second leftmost store’s index 

number represents the store which has the second highest 

priority to select for delivery; and so on. For example, the 

permutation (1, 3, 2, 5, 4) means than the convenience 

stores can be arranged from the highest priority to the 

lowest priority as follows: store 1, store 3, store 2, store 5 

and then store 4. This mapping procedure can be found in 

[15]. 

The process of generating the truck routes based on the 

predefined truck priorities and store priorities is given 
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below. Note that every truck must start its trip at the 

distribution store only. 

1) Assign the highest-priority truck to use in the current 

single round-trip. 

2) The current single round-trip can be constructed as 

follows. 

2.1) Start the round-trip of the truck selected in step 1 

from the distribution center.  

2.2) Select the highest-priority convenience store from 

all unvisited stores that has the demands (in cubes) 

less than the remaining loading capacity of the 

truck (in cubes); assign the truck to serve this just 

selected convenience store and the remaining 

loading capacity of this truck is then reduced by 

the demands of the just visited store.  

2.3) Repeat from step 2.1 until there are no any 

unvisited convenience store from all n stores that 

has the demands less than the remaining loading 

capacity of the truck. Then let the truck go back to 

the distribution center. This round-trip is now 

finished. 

3) Repeat from step 1 for the next trip until the products 

have been delivered to all convenience stores 

successfully. 

V. PROPOSED ALGORITHMS 

This paper proposes multiple local search algorithms 

based on different neighborhood structures, i.e. swap, 

insert and reverse. To generate a neighborhood 

permutation S1 of a permutation S in the swap structure, 

the algorithm will randomly select two integer numbers 

from S and then swap the positions of these two integer 

numbers in the permutation. Let S1 = swap(S) present that 

S1 is a neighborhood permutation of S in the swap 

structure.  

In the insert structure, to generate a neighborhood 

permutation S1 of a permutation S, the algorithm will 

randomly select two integer numbers from S and then 

move the second selected integer number to the position 

in front of the first selected integer number. Let S1 = 

insert(S) present that S1 is a neighborhood permutation of 

S in the insert structure.  

In the reverse structure, to generate a neighborhood 

permutation S1 of a permutation S, the algorithm will 

randomly select two integer numbers from S and then all 

integer numbers located between these two integer 

numbers including themselves will be relocated in the 

reverse positions. That is, the leftmost number will be the 

rightmost number; the second leftmost number will be the 

second rightmost number; and so on. Let S1 = reverse(S) 

present that S1 is a neighborhood permutation of S in the 

reverse structure.  

Let the local search algorithm using the swap structure, 

the local search algorithm using the insert structure, and 

the local search algorithm using the reverse structure are 

called the S algorithm, the I algorithm, and the R 

algorithm, respectively. Algorithm 1 given below 

presents the steps of the S algorithm. T is the maximum 

number of neighbors of which the algorithm can be used 

for each solution.  

Algorithm 1, as the steps of the S algorithm, is given 

below.  

1) Generate the initial permutation S0 randomly. 

2) Let t = 0. 

3) Generate a neighborhood permutation S1 = swap(S0). 

If the truck routes given from S1 returns the lower 

total lump-sum amounts as well as the lower total 

transportation distances than the truck routes given 

from S0, then assign S0 = S1 and repeat from step 2; 

otherwise, t = t + 1 and repeat from step 3 until t = T 

then stop the algorithm. The S0 is the best solution 

found by the algorithm after it is stopped.  

The steps of the I algorithm are easily developed by 

replacing S1 = swap(S0) in step (3) of Algorithm 1 by S1 = 

insert(S0). The steps of the R algorithm are developed by 

replacing S1 = swap(S0) in step (3) of Algorithm 1 by S1 = 

reverse(S0).  

This paper then develops the six double-phase local 

search algorithms. The S-I algorithm uses the swap 

structure in phase 1 and then the insert structure in phase 

2. The S-R algorithm uses the swap structure and then the 

reverse structure, the I-S algorithm uses the insert 

structure and then the swap structure, the I-R algorithm 

uses the insert structure and then the reverse structure, the 

R-S algorithm uses the reverse structure and then the 

swap structure, and the R-I algorithm uses the reverse 

structure and then the insert structure. Algorithm 2 

presents the steps of the S-I algorithm. 
Algorithm 2, as the steps of S-I algorithm, is given 

below. 

1) Generate the initial permutation S0 randomly. 

2) Let t = 0. 

3) Generate a neighborhood permutation S1 = swap(S0). 

If the truck routes given from S1 uses lower total 

lump-sum amounts and lower total transportation 

distances than the truck routes given from S0 and , 

then S0 = S1 and repeat from step (2); otherwise, t = t 

+ 1 and repeat from step (3) until t = T1 then go to 

step (4). 

4) Let t = 0. 

5) Generate a neighborhood permutation S1 = insert(S0). 

If the truck routes given from S1 uses lower total 

lump-sum amounts and lower total transportation 

distances than the truck routes given from S0 and , 

then S0 = S1 and repeat from step 4; otherwise, t = t + 

1 and repeat from step 5 until t = T2 then step the 

algorithm. The S0 is the best solution found by the 

algorithm after it is stopped. 

The steps of the other double-phase local search 

algorithms can be developed by changing some parts of 

Algorithm 2 as follows.  

1) The S-R algorithm is developed by replacing S1 = 

insert(S0) with S1 = reverse(S0) in step 5. 

2) The I-S algorithm is developed by replacing S1 = 

swap(S0) with S1 = insert(S0) in step 3 and also 

replacing S1 = insert(S0) with S1 = swap(S0) in step 

5. 

3) The I-R algorithm is developed by replacing S1 = 

swap(S0) with S1 = insert(S0) in step 3 and also 

replacing S1 = insert(S0) with reverse(S0) in step 5. 
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4) The R-S algorithm is developed by replacing S1 = 

swap(S0) by reverse(S0) in step 3 and replacing S1 

= insert(S0) by swap(S0) in step 5. 

The R-I algorithm is developed by replacing S1 = 

swap(S0) by S1 = reverse(S0) in step 3. 

VI. EXPERIMENTS AND RESULTS 

This paper generates the three problem instances based 

on the real data. However, to protect the company’s 

confidential data, all the distances, the lump-sum amounts 

paid for the service zones and the store’s demands of the 

company’s data are multiplied by confidential numbers 

and are then used as the data for the problem instances in 

this paper. These three problem instances use the same 

data, excepting the data of demands. The high-season 

problem instance, the medium-season problem instance 

and the low-season problem instances are generated by 

using the data collected in the high season, the medium 

season and the low season, respectively. For all three 

problem instances, the subcontractor has 145 trucks, 65 

trucks of them are the small-size trucks which have the 

maximum loading capacity of 5.5 cubes, and 80 trucks of 

them are the big-size trucks which have the maximum 

loading capacity of 10 cubes; the company has one 

distribution center and 896 convenience stores. The data 

about distances (in km), convenience store demands (in 

cubes), area zones and their involved lump-sum amounts 

(in Bath) are given in appendixes. The convenience stores 

with demands of 0 cubes means that they have no 

demands at the day of collected data, but the truck is still 

required to visit there to submit some small documents or 

letters. 

To compare the performance of the proposed 

algorithms on the problem, all algorithms are coded from 

C# program under Windows and they are executed by a 

1.75 GHz AMD E2-2000 APU processor. Each algorithm 

will be repeated thrice with different initial solutions on 

each problem instances. For the single-phase local search 

algorithms, the maximum number of neighbors of each 

solution T = n(n – 1)  2. This value is used because it is 

the number of all outcomes of selecting two integer 

numbers from n integer numbers in the permutation S. 

For the double-phase local search algorithms, the 

maximum number of neighbors of each solution for the 

first phase T1 = n(n – 1)  4 and the maximum number of 

neighbors of each solution for the second phase T2 = n(n 

– 1)  4. This value makes T1 + T2 = T and results in the 

fair comparisons in the computational times.  
The problem proposed in this paper has bi-criteria, i.e. 

the total lump-sum amounts of which the company has to 

pay the subcontractor and the total distances of which the 

subcontractor’s truck is used. In order to combine the two 

criteria into a single criterion, this paper transforms the 

total distances into the total gasoline fees by multiplying 

the gasoline fee per kilometer, i.e. 0.75 Bath; then, the 

new single criterion is the summation of the lump-sum 

amounts paid by the company and the total gasoline fees 

paid by the subcontractor. Note that the value of 0.75 is 

from the real gasoline fee per kilometer multiplied by the 

same confidential number used for the lump-sum 

amounts of the service zones.   

A. Results from High-volume Instance 

Table I shows the total lump-sum amounts (in Baht) of 

the truck routes given by the three runs of all algorithms 

on the high-volume instance. In the table, Best means the 

total lump-sum amounts of the best solution given by 

each algorithm.  Based on the results shown in the table, 

The S algorithm performs best in the comparison, and the 

R-S algorithm is the second best algorithm in the 

comparison. 

TABLE I.  LUMP-SUM AMOUNTS ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 230,765 231,557 230,118 230,118 

I 246,953 247,880 247,260 246,953 

R 245,388 246,005 246,794 245,388 

S-I 234,853 235,073 234,482 234,482 

S-R 233,612 234,894 233,428 233,428 

I-S 234,774 234,203 235,402 234,203 

I-R 247,661 246,730 245,183 245,183 

R-S 233,137 234,453 232,662 232,662 

R-I 244,525 244,664 246,118 244,525 

 

Later on, Table II shows the total distances (in km) 

consumed by the truck routes on the high-volume 

instance. In this table, Best is the total distances of the 

best solution found by each algorithm.  The S algorithm 

performs best in the comparison, and the I-S algorithm is 

the second best algorithm in the comparison.  

TABLE II.  DISTANCES ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 216,504 215,070 211,212 211,212 

I 231,217 227,124 227,803 227,124 

R 227,397 229,914 230,338 227,397 

S-I 220,013 218,410 219,099 218,410 

S-R 219,878 216,933 218,056 216,933 

I-S 212,678 213,746 222,156 212,678 

I-R 228,895 227,004 225,379 225,379 

R-S 214,340 221,400 225,076 214,340 

R-I 228,940 230,537 224,521 224,521 

TABLE III.  SUMS OF COSTS ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 393,143 392,859 388,527 388,527 

I 420,366 418,223 418,112 418,112 

R 415,936 418,441 419,548 415,936 

S-I 399,863 398,880 398,806 398,806 

S-R 398,520 397,594 396,970 396,970 

I-S 394,282 394,512 402,018 394,282 

I-R 419,332 416,983 414,217 414,217 

R-S 393,892 400,503 401,469 393,892 

R-I 416,230 417,566 414,508 414,508 

 

Table III presents the summations of the total lump-

sum amounts paid by the distribution center and the total 

gasoline fees from the truck routes paid by the 
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subcontractor which are generated by the nine proposed 

algorithms.  

In Table III, the S algorithm performs best in the 

comparison, and the R-S algorithm is the second best 

algorithm in the comparison. Although I-S performs very 

well in the total distances, it is the fourth in the lump-sum 

amounts; thus, the R-S algorithm wins the I-S algorithm 

in the combining criterion.  

B. Results from Medium-volume Instance 

Table IV presents the total lump-sum amounts (in Baht) 

of the truck routes on the medium-volume instance. 

Based on the results shown in the table, again, the S 

algorithm performs best in the comparison, and the R-S 

algorithm is the second best algorithm in the comparison. 

TABLE IV.  LUMP-SUM AMOUNTS ON MEDIUM-VOLUME INSTANCE  

Algorithm 1 2 3 Best 

S 204,576 204,368 204,313 204,313 

I 221,683 222,546 221,840 221,840 

R 219,670 219,925 220,164 219,670 

S-I 208,464 210,020 210,009 208,464 

S-R 207,358 206,863 209,732 206,863 

I-S 209,823 208,489 208,989 208,489 

I-R 221,699 221,061 222,125 221,061 

R-S 206,535 208,101 206,651 206,535 

R-I 216,506 222,035 219,287 216,506 

 

Table V then shows the total distances (in km) used by 

the truck routes on the medium instance. The S algorithm 

is the highest performance algorithm and the S-R 

algorithm is the second best algorithm in the comparison. 

TABLE V.  DISTANCES ON MEDIUM-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 187,899 179,425 184,074 179,425 

I 214,702 218,096 212,337 212,337 

R 218,710 213,421 214,055 213,421 

S-I 192,560 193,491 194,351 192,560 

S-R 188,945 186,490 192,254 186,490 

I-S 195,874 196,673 193,540 193,540 

I-R 216,083 216,709 215,754 215,754 

R-S 193,799 197,177 191,139 191,139 

R-I 214,160 218,976 216,735 214,160 

TABLE VI.  SUMS OF COSTS ON MEDIUM-VOLUME INSTANCE  

Algorithm 1 2 3 Best 

S 345,500 338,937 342,369 338,937 

I 382,889 386,118 381,093 381,093 

R 383,702 379,991 380,706 379,991 

S-I 352,884 355,139 355,772 352,884 

S-R 349,067 346,731 353,922 346,731 

I-S 356,729 355,994 354,143 354,143 

I-R 383,761 383,592 383,941 383,592 

R-S 351,885 355,983 350,005 350,005 

R-I 377,125 386,267 381,838 377,125 

 

Table VI shows the summations of the total lump-sum 

amounts and the total gasoline fees from the truck routes 

generated by the algorithms. In this table, the S algorithm 

performs best in the comparison, and the S-R algorithm is 

the second best algorithm in the comparison. Although 

the R-S algorithm performs slightly better than the S-R 

algorithm in the criterion of the total lump-sum amounts, 

the S-R algorithm is better than the S-R algorithm in the 

combining criterion because the S-R algorithm performs 

much better than the R-S algorithm in the criterion of the 

total distances.  

C. Results from Low-volume Instance 

Table VII provides the total lump-sum amounts (in 

Baht) of the truck routes given on the low-volume 

instance. Based on the results shown in the table, The S 

algorithm performs best and the R-S algorithm is the 

second in the comparison.    

TABLE VII.  LUMP-SUM AMOUNTS ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 166,747 167,617 166,214 166,214 

I 180,383 180,517 180,128 180,128 

R 176,589 178,095 178,801 176,589 

S-I 169,910 171,739 170,840 169,910 

S-R 169,236 171,460 169,450 169,236 

I-S 170,362 169,838 169,395 169,395 

I-R 180,834 179,832 179,424 179,424 

R-S 169,361 170,387 169,020 169,020 

R-I 178,763 177,701 177,631 177,613 

 

Table VIII shows the total distances (in km) consumed 

by the truck routes on the low-volume instance. The S 

algorithm is the best and the S-R algorithm is the second 

best in the comparison. 

TABLE VIII.  DISTANCES ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 208,396 207,785 208,884 207,785 

I 219,358 224,519 216,592 216,592 

R 218,722 221,368 222,294 218,722 

S-I 213,576 214,637 213,314 213,314 

S-R 209,384 209,755 215,310 209,384 

I-S 215,933 216,233 215,736 215,736 

I-R 221,406 220,742 223,159 220,742 

R-S 215,781 216,260 214,416 214,416 

R-I 220,996 219,762 220,481 219,762 

TABLE IX.  SUMS OF COSTS ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 323,044 323,455 322,877 322,877 

I 344,902 348,906 342,572 342,572 

R 340,630 344,121 345,522 340,630 

S-I 330,091 332,717 330,826 330,091 

S-R 326,274 328,776 330,932 326,274 

I-S 332,312 332,012 331,197 331,197 

I-R 346,888 345,389 346,793 345,389 

R-S 331,197 332,581 329,831 329,831 

R-I 344,510 342,522 342,974 342,522 

 

Table IX shows the summations of the total lump-sum 

amounts and the total gasoline fees from the truck routes 

generated by the algorithms. In this table, the S algorithm 
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performs best, and the S-R algorithm is the second best 

algorithm in the comparison. Again, although the R-S 

algorithm performs slightly better than the S-R algorithm 

in the criterion of the total lump-sum amounts, the S-R 

algorithm is better than the S-R algorithm in the 

combining criterion because the S-R algorithm performs 

much better than the R-S algorithm in the criterion of the 

total distances. 

Based on the three problem instances’ results in Tables 

I, IV and VII, the S algorithm is the best algorithm and 

the R-S algorithm is the second best algorithm in the 

comparison of the total lump-sum amounts spent by the 

company. This paper then do the hypothesis test of H0: 

the population mean of the differences between the best 

solution values of the S algorithm and the best solution 

values of the R-S algorithm is zero versus H1: the 

population mean of the differences is less than zero for 

the significance level of 0.10 by using Minitab. Hereafter, 

in all hypothesis tests on this paper, a best solution value 

means a best solution value taken from any three 

solutions. The Minitab program returns the p-value of 

0.002; thus it concludes that the mean of the best solution 

values of the S algorithm is better than the mean of the 

best solution values of the R-S algorithm by the 

significance level of 0.10 in the criterion of the total 

lump-sum amounts. 

In the comparison of the total distances of the truck 

routes spent by the subcontractor on the three problem 

instances based on data from Table II, V and VIII, the S 

algorithm is the best algorithm and the S-R algorithm is 

the second best algorithm in the comparison. This paper 

then do the hypothesis test of H0: the population mean of 

the differences between the best solution values of the S 

algorithm and the best solution values of the S-R 

algorithm is zero versus H1: the population mean of the 

differences is less than zero for the significance level of 

0.10 by using Minitab. The Minitab program returns the 

p-value of 0.05; thus it concludes that the mean of the 

best solution values of the S algorithm is better than the 

mean of the best solution values of the S-R algorithm by 

the significance level of 0.10 in the criterion of the total 

distances. 

Based on the three problem instances’ results in Tables 

III, VI and IX, the S algorithm is the best algorithm and 

the S-R algorithm is the second best algorithm in the 

criterion of the sum of the total lump-sum amounts and 

the total gasoline fees. This paper then do the hypothesis 

test of H0: the population mean of the differences 

between the best solution values of the S algorithm and 

the best solution values of the S-R algorithm is zero 

versus H1: the population mean of the differences is less 

than zero for the significance level of 0.10 by using 

Minitab. The Minitab program returns the p-value of 

0.027; thus it concludes that the mean of the best solution 

values of the S algorithm is better than the mean of the 

best solution values of the R-S algorithm by the 

significance level of 0.10 in the combining criterion. 

All proposed algorithms perform equally in terms of 

computational time consumption. Average computational 

time per run of each algorithm is given as follows: S 

algorithm uses 23 minutes, I algorithm uses 26 minutes, 

S-I algorithm uses 22 minutes, S-R algorithm uses 24 

minutes, I-S algorithm uses 24 minutes, I-R algorithm 

uses 26 minutes, R-S algorithm uses 24 minutes and R-I 

algorithm uses 26 minutes. 

Based on the experiment results, the S algorithm 

performs best both in the total lump-sum amounts paid by 

the company and the total distances consumed by the 

subcontractor. The R-S algorithm performs as the second-

best in the objective function of total lump-sum amounts 

and the S-R algorithm performs as the second-best in the 

objective function of total distances. 

VII. ADDITIONAL EXPERIMENTS 

Based on the findings from Section VI, the S algorithm 

outperforms other algorithms when the single-phase 

algorithms use T = n(n – 1)  2 and the double-phase 

algorithms use T1 = T2 = n(n – 1)  4. However, it is 

possible that the results may change if T increases 

because the S algorithm may get struck in the local 

optimum when T is increased. And it will open the 

change to the double-phase local search algorithms, e.g. 

the S-R algorithm and the R-S algorithm, to win the 

competition.  

Thus, this section will run each of the S algorithm, S-R 

algorithm and R-S algorithm thrice on the three problem 

instances by using T = n(n – 1) for the S algorithm, and 

T1 = T2 = n(n – 1)  2 for the S-R algorithm and the R-S 

algorithm. This section selects only the S-R and R-S 

algorithms to compare to the S algorithm because they 

perform well in all criteria. The results of total lump-sum 

amounts on the three instances are given in Tables X, XI 

and XII. 

TABLE X.  LUMP-SUM AMOUNTS ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 226,406 226,856 226,694 226,406 

S-R 230,623 228,345 231,033 228,345 

R-S 230,726 230,164 227,982 227,982 

TABLE XI.  LUMP-SUM AMOUNTS ON MEDIUM-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 202,387 201,685 200,425 200,425 

S-R 205,569 203,976 204,381 203,976 

R-S 203,616 203,176 203,400 203,176 

TABLE XII.  LUMP-SUM AMOUNTS ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 162,546 166,556 163,713 162,546 

S-R 166,556 166,048 167,426 166,048 

R-S 163,713 166,181 166,292 163,713 

 

As shown in Tables X, XI and XII, the sample mean of 

the best solution values of S algorithm is the lowest, the 

R-S algorithm is the second best algorithm, and the S-R 

algorithm is worst in the competition. Then, this paper do 

the hypothesis test of H0: the population mean of the 

differences between the best solution values of the S 
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algorithm and the best solution values of the R-S 

algorithm is zero versus H1: the population mean of the 

differences between the best solution values of the S 

algorithm and the best solution values of the R-S 

algorithm is less than zero, using the significance level of 

0.1. The Minitab program returns the p-value of 0.031; 

thus, it concludes that the population mean of the best 

solution values of the S algorithm is better than the 

population mean of the best solution values of the R-S 

algorithm by the significance level of 0.10 in the criterion 

of the total lump-sum amounts. 

Later on, the results of total distances generated by the 

three algorithms on the three instances are presented in 

Tables XIII, XIV and XV, respectively. Based on the data 

from these tables, the sample mean of the best solution 

values of the S algorithm is the lowest, the sample mean 

of the best solution values of the S-R algorithm is the 

second lowest, and the sample mean of the best solution 

values of the R-S algorithm is worst in the criterion of the 

total distances used by the trucks. 

TABLE XIII.  DISTANCES ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 210,573 211,354 209,202 209,202 

S-R 216,352 213,533 214,104 213,533 

R-S 215,040 217,315 212,610 212,610 

TABLE XIV.  DISTANCES ON MEDIUM-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 178,907 179,728 176,985 176,985 

S-R 188,105 180,149 182,010 180,149 

R-S 183,847 189,307 190,813 183,847 

TABLE XV.  DISTANCES ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 205,882 205,983 200,760 200,760 

S-R 211,485 207,176 210,577 207,176 

R-S 208,732 210,100 206,292 206,292 

 

This paper do the hypothesis test of H0: the population 

mean of the differences between the best solution values 

of the S algorithm and the best solution values of the S-R 

algorithm is zero versus H1: the population mean of the 

differences between the best solution values of the S 

algorithm and the best solution values of the S-R 

algorithm is less than zero, using the significance level of 

0.1. The Minitab program returns the p-value of 0.02; 

thus, it concludes that the mean of the best solution 

values of the S algorithm is lesser than the mean of the 

best solution values generated by the S-R algorithm by 

the significance level of 0.10 in the criterion of the total 

distances.   

Based on the results received, the S algorithm is the 

highest performance algorithm in both criteria. This result 

of competition is different from the prediction mentioned 

earlier; it is expected that one of the S-R and R-S 

algorithms will win the S algorithm when increasing the 

value of T. The results from this paper show that the swap 

structure dominates over other structures for the proposed 

problem. However, the second best algorithms in the 

lump-sum amounts and in the total distances are different. 

The R-S algorithm is the second in the lump-sum 

amounts while the S-R algorithm is the second in the total 

distances. Thus, which one is the real second best 

algorithm is judged by using the combining criterion.  

Tables XVI, XVII, and XVIII show the summations of 

the total lump-sum amounts and the total gasoline fees 

from the truck routes generated by the algorithms on the 

three problem instances. 

TABLE XVI.  SUMMATION OF COSTS ON HIGH-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 384,335 385,371 383,595 383,595 

S-R 392,886 388,495 391,611 388,495 

R-S 392,006 393,151 387,439 387,439 

TABLE XVII.  SUMMATION OF COSTS ON MEDIUM-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 336,567 336,481 333,164 333,164 

S-R 346,648 339,088 340,888 339,088 

R-S 341,501 345,156 346,510 341,501 

TABLE XVIII.  SUMMATION OF COSTS ON LOW-VOLUME INSTANCE 

Algorithm 1 2 3 Best 

S 316,957 318242 315,440 315,440 

S-R 325,170 321,430 325,358 321,430 

R-S 320,262 323,756 321,011 320,262 

 

The results from the tables show that the sample mean 

of the best solution values of the S algorithm is lowest, 

that of the S-R algorithm is second lowest. For the 

hypothesis test of H0: the population mean of the 

differences between the best solution values of the S 

algorithm and that of the S-R algorithm is zero versus H1: 

the population mean of the differences between the best 

solution values of the S algorithm and the best solution 

values of the S-R algorithm is less than zero using the 

significance level of 0.1, the p-value is 0.002. Thus, it 

concludes that the population mean of the best solution 

values of the S algorithm is less than that of the S-R 

algorithm with the significance level of 0.1. This shows 

that the S algorithm is the highest performing algorithm 

for all criteria. 

In the comparison between the S-R algorithm and the 

R-S algorithm, the hypothesis test of H0: the population 

mean of the differences between the best solution values 

of the S-R algorithm and the best solution values of the 

R-S algorithm is zero versus H1: the population mean of 

the differences between the best solution values of the S-

R algorithm and the best solution values of the R-S 

algorithm is less than zero using the significance level of 

0.1 returns the p-value of 0.481. Thus, it concludes that 

there is not different between the population mean of the 

best solution values of the S-R algorithm and that of the 

R-S algorithm with the significance level of 0.1. 

VIII. CONCLUSION 
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This paper introduces the generalized VRP with the bi-

criteria. The VRP aims to deliver products from a 

distribution center to the convenience stores. However, 

the distribution center itself has no the trucks; thus, it uses 

the subcontractor to deliver its products. The distribution 

center has to pay the subcontractor trip-by-trip based on 

the service area’s zone traveled by a truck. This problem 

considers the criterion of the total lump-sum amount paid 

by the distribution center to the subcontractor and the 

criterion of the total distances used by the trucks of the 

subcontractor.  To cope with the problem, this paper 

introduces the nine algorithms, i.e. the S algorithm, I 

algorithm, R algorithm, S-I algorithm, S-R algorithm, I-S 

algorithm, I-R algorithm, R-S algorithm, and R-I 

algorithm. These proposed algorithms are tested on the 

three problem instances, i.e. the high-volume instance, 

medium-volume instance and low-volume instance. The 

results of the experiments shows the S algorithm 

outperforms on all criteria.  

APPENDIXES 

The data of the problem instances used in this paper 

are shown in the three appendices, namely Appendixes 

A–C, which can be accessed online via the following link: 

https://drive.google.com/file/d/0B2XqS3TSsvP7UWg4d

U51dEJOMFk/edit?usp=sharing. Appendix A provides 

the details of the distances between the distribution center 

and each convenience store, and the distances between 

two convenience stores. Appendix B provides the details 

of the demands of the convenience stores for the three 

problem instance. Appendix C provides the details of the 

area zones and the corresponding lump-sum amounts for 

the big-size trucks and the small-size trucks. 
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