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Abstract—Mathematical optimization techniques have been 

widely used in modeling and solving rail transportation 

problem. In dealing with conflicting trains during service 

disruptions, rescheduling train aims to produce an adjusted 

periodic timetable for the affected trains using available 

resources while satisfying a set of operational constraints. In 

this paper, we present some modifications on a mixed integer 

programming (MIP) model with the objective of minimizing 

the total service delays when service disruptions occur. Based 

on a selected reference model, the sets, parameters and the 

decision variables of the modified model are thoroughly 

discussed in this paper. Two problem cases with small 

sample data were created to test the model and interpret the 

reschedule results. The solutions that have been generated 

successfully provide the new provisional timetable, 

indicating the total delay experienced by trains. 

 

Index Terms—mathematical optimization model, mixed 

integer programming, service delays, railway rescheduling  

 

I. INTRODUCTION 

Operational problems and unexpected events such as 

technical failures, equipment breakdown, extraordinary 

passenger volumes, track accidents or weather conditions 

normally cause disruptions to railway network. In this 

situation, control managers need to reshuffle train orders, 

make unplanned stops and break connections, re-route 

trains and even delay or cancel scheduled services. 

Changes in the original train departure and arrival 

schedules can create conflicts in the use of tracks and 

platforms. Thus, operational decisions must resolve the 

problem and reschedule the affected train movement with 

an objective to minimize the effect of railway traffic 

perturbations.   

This paper intends to present some modification on a 

mathematical model for solving post-disruption railway 

rescheduling problem that minimizes the total delays of 

trains in the whole railway network. To achieve the 

objective, a new mixed integer programming (MIP) 

model for rescheduling railway is proposed. This paper 

illustrates the important elements for the model 

construction, including the sets, parameters and variables. 

It is also expected to highlight the future direction of the 
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modeling works. The complete model and the solution 

approach are expected to bring new ideas for multiple 

perspective improvements in delay management, as well 

as business engineering process as well as quality 

engineering improvement. 

This paper is outlined as follows: Section II discusses 

some relevant literatures on the railway rescheduling 

model construction. The strength and weaknesses of the 

reference model are briefly discussed in Section III, while 

Section IV highlights the crucial elements in the 

mathematical model construction. Section V presents the 

computational results while Section VI briefly explains 

the complexity of the model concerning the complicated 

combinatorial problem. The conclusion and further 

research of the study are drawn in Section VII. 

II. RELATED WORKS 

Among the various types of quantitative models used 

in rescheduling railway services, a study done by 

Alwadood, Shuib and Hamid [1] has shown that integer 

programming (IP) and MIP are widely used in 

formulating the optimization problem. They are 

technically chosen because the models are able to 

accommodate the linearity of the objective functions and 

constraints.  

This section summarizes and compares the criteria that 

are relevant in the formulation of the mathematical 

models which are used in selected literatures of train 

rescheduling problem. Among the published results are 

the works of Narayanaswami and Rangaraj [2], Caimi 

Fuchsberger, Laumanns and Luthi [3], Acuna-Agost [4], 

Stanojevic, Maric, Kratica, Bojovic and Milenkovic [5], 

Murali [6], Afonso [7], Zhou and Zhong [8], Tornquist 

and Persson [9] and Tornquist and Persson [10].  

Basically, the mathematical models are based on three 

sets namely train, block or segment and station, as shown 

explicitly in Table I (A). The set of trains contains all 

types of train running on the rail track which may be in 

outbound or inbound direction, or in some works it is 

known as up line or down line direction. The set of 

blocks or segments is the collection of all sections of 

railway tracks which can only be occupied by one train in 

a direction, at any particular time.  
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A train is disallowed to enter an empty block section 

without first securing the permission of the station. The 

set of stations is the entire terminal meet point for the 

trains within the relevant study area. These three sets are 

dominant in all the models identified in the nine selected 

literatures. However the sets of events for each of these 

train, block or segment and station are only used in some 

of the studies. These sets of events are the resource 

requested by a specific train, block or segment and station, 

respectively. 

TABLE I.  CROSS ANALYSIS OF SETS, PARAMETERS AND DECISION VARIABLES USED IN MODELS OF RELATED WORKS 

 
AUTHORS 

(A) SETS [1] [2] [3] [4] [5] [6] [7] [8] [9] 

train          
block/segment 

 
       

station  
 

     
 

events for train 
  


 

  
  

 
events for block/segment 

  


 
  

  
 

events in stations 
  


 

  
    

          
(B) PARAMETERS [1] [2] [3] [4] [5] [6] [7] [8] [9] 

initial start of event of train as in timetable         
initial end of event of train as in timetable   

 
    

earliest start time of event of train   
 


  

 
earliest end time of event of train       

  
 

separation time for meeting trains 
 


 

     
separation time for following trains 

 


 
     

minimum running (waiting) time for event  
 


 

     
penalty/cost per time unit for delays 

 
 

 
  

  
 

large positive constant  
 


 


 


 


time horizon/time index  

 
 

 


  
dwell time 

   
    

  
last event on a train 

  
    

    
next event on a train 

   
   

    
capacity of meetpoint 

  
   

   
direction of event of train   

 
  

 
 

 
length of each track 

    


  


 
length of each train 

    
  

  


 
     

  
    

(C) DECISION VARIABLES [1] [2] [3] [4] [5] [6] [7] [8] [9] 

start time of event for train         
end time of event for train         
event uses track t or not 

 
   

 
 

 
event on block occurs before or after an event 

  


 
  

 
  

magnitude of delay for event for train   
 

  
  

 
the order of events change or not 

 


 
  

  


 
an unplanned stop is added during event or not 

  


 
  

 


  
event uses train h or not 

   
 

    
train h is leaving or waiting at station k 

   
   

    
[1] Narayanaswami & Rangaraj, 2013; [2] Caimi et al., 2012; [3] Acuna Agost, 2010; [4] Stanojevic et al., 2010; [5]Murali, 2010, [6] Afonso, 

2008; [7] Zhou & Zhong, 2007; [8] Tornquist & Persson, 2007; [9] Tornquist & Persson, 2005. 
 

Due to the dimensions of the problem and the complex 

nature of the IP and MIP models, the selection of the 

parameters that would be taken into the model 

formulation needs to be closely examined. Table I (B) 

provides the cross analysis of some common main model 

parameters used in the selected research works. Many 

selected models share almost similar parameters but there 

are also models which incorporate a set of unique 

parameters as an attempt to improve an existing model or 

to introduce a hybrid mathematical model. For instance, 

Tornquist and Perrson [10] introduced the parameters for 

train connection in order to handle the objective function 
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of costs for missing connections. In addition to this, 

Acuna Agost [4] introduced the parameters of braking 

and accelerating time as a result of unplanned stops.  

Having said this, to come up with a newly-developed 

model, it is recommended that the common listed 

parameters should be first included to ensure the 

sensibility of the model. This will then be followed by 

introducing fresh elements in the model formulation to 

offer a unique research novelty. 

As all the research works aim to arrive at provisional 

timetables which are able to minimize service delay, then 

it is expected that the most important decision variables 

in the model formulation should be the start time and end 

time of the event for train. Other decision variables relate 

to which train that is to be used, which track the train 

should run on, which station the train should be leaving 

from or waiting at, among others. For the decision 

variables involving ‘yes’ or ‘no’ answer, binary variables 

of ‘1’ and ‘0’ are used. The cross analysis of decision 

variables used in the mathematical programming models 

in the selected literatures is shown in Table I (C). 

III. THE REFERENCE MODEL 

Train rescheduling is a large size combinatorial 

problem. In many countries nowadays, the railway 
infrastructure is no longer operating on an isolated or 

separate railway tracks but rather involving high 

integration of rail network which consists of many 

interact railway lines. A cross analysis on the sets, 

parameters and decision variables that have been used in 

various mathematical models is done by Alwadood, 

Shuib and Hamid [11]. Among all the models analyzed, 

Tornquist and Persson [9] MIP model is selected to be the 

reference model for this work. The model aims to 

minimize the total final delay of the railway traffic and 

the total cost associated with delays. It is a strong 

formulation of rescheduling railway traffic problem in 

railway network because it accommodates the concept of 

multi-operator tracked lines, multi-passenger demands 

and highly interacting traffic. Other mathematical and 

non-mathematical models did not address these 

complexities in the model formulation. Therefore, this 

model has been chosen as the reference model in this 

study.  

In spite of these strengths, few aspects are disregarded 

in the model formulation which may affect the 

practicality of the generated outcomes. For instance, due 

to the limited availability of data, all stations in the 

experimented rail network are assumed to have four 

parallel tracks. The assumption may be an 

oversimplification as stations could have far greater 

number of parallel tracks or only a minimum number of 

two tracks for smaller stations. Other flaw of the model is 

due to a constraint which indicates that two trains must be 

separated by certain time duration when they are on the 

same track of a segment. In practice, two trains using 

different tracks on different segments must also be 

separated by certain gap of time. One scenario would be 

when two trains using different tracks on different 

segments are going to cross each other and heading to the 

other track of the subsequent segments. Even when these 

two trains are using different tracks of a segment, the 

action can still violate the rail safety restrictions and may 

possibly cause an accident. To cater to the conflicting 

routing, the signaling switches between the tracks need to 

be included in the model formulation, so as to coordinate 

each event in a synchronized sequence and avoid 

accidents.  

IV. THE MODIFIED MODEL 

Based on the work done by Alwadood, Shuib and 

Hamid [11], the new mathematical model to be 

formulated will be using notation from Tornquist and 

Persson model, in addition to some selected parameters 

from other literatures including Stanojevic, Maric, 

Kratica, Bojovic and Milenkovic (2010), Murali (2010) 

and Afonso (2008). Hence some of the notations used for 

the preliminary model’s sets, parameters and decision 

variables will be the same.  

A. Sets and Parameters 

Basically, the model is based on three sets. The first set 

is the set of trains T with index i, where Ti∈  contains 

all train running on the rail track, which may be in up line 

or down line direction.  

The second set is the set of segment B with index j, 

where Bj∈  is the collection of all sections of railway 

tracks, which are separated by the series of signal switch 

control. An ordinary train route has a signal switch 

control located right before the block entrance. Once 

accepted, no other trains will be allowed on the block or 

segment without permission from the signal switch. The 

distance between the signals varies along the track based 

on the geographical safety aspects such as the elevation 

of ground and the blind spots at curving turn. 

 

Figure 1.  Types of segment 
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There are two types of segment location l which are 

the non-station segment and station segment. These are 

denoted by lj =1 and lj = 0, respectively. Fig. 1 illustrates 

the segment between stations (B, C and D) and the 

segment within stations (A and E). For each segment, 

there is a set of parallel tracks Pj ={1,....,pj}.  

A standard railway safety regulation normally imposes 

a minimum distance between two consecutive trains to 

avoid accidents. The distance which is usually termed as 

time headway, indicates the time when a train exits from 

a segment and the subsequent train enters the same 

segment. The parameter Hj denotes the time headway in 

case when one train is following the other on a track of 

segment j.  

Finally, the third set is the set of events E with index k, 

where Ek∈ are the resource requested by a specific 

train for a specific block. EK i⊆ is the ordered set of 

events of train i, and EL j⊆ is the ordered set of events 

of segment j, as established in the original timetable. For 

each of the set iK  and jL , their last event in each set is 

denoted by ni and mj, respectively. The first proceeding 

event of event k is denoted by (k+1). On the other hand, 

k̂ is used to denote any event following event k, where 

kk̂ > .  

Let kr be the route of event k, having the value of ‘1’ 

if it is in up line direction and ‘0’ if it is in down line 

direction. For an event k running at a segment, the 

minimum time is denoted by the parameter kΔ , which 

starts when the first train coach enters the segment. The 

speed is assumed constant, as the train speed profile 

including the rates of acceleration and braking are 

ignored in the model. 

A train timetable defines the scheduled departure and 

arrival time to satisfy passengers’ demand in reaching 

their destinations. The parameter 
S
kd and 

S
ka  specify the 

scheduled departure and scheduled arrival time of event k 

as in timetable, respectively. In spite of the schedule 

established, the real-time train events do not always start 

and end as time planned. To take the possibilities of any 

instantaneous deviation into account, 
A
kd and 

A
ka  will 

denote the actual departure and actual arrival time of 

event k.  

M is an arbitrarily large positive constant. It is included 

so that a constraint is binding when a binary decision 

variable takes a value of 1. On the other hand, if it takes a 

value of 0, the constraint will become redundant. In 

addition to this, iδ and iη are two constants introduced to 

denote the time taken for a train to pass one non-station 

and station segment, respectively. 

B. Decision Variables 

The mathematical programming model aims to 

produce a provisional timetable when disruption occurs. 

There are seven decision variables anticipated from the 

solution method. The first two are 
R
kd and 

R
ka , which 

represent the start time and the end time of the 

rescheduled event k, where Ek∈ , EK i⊆ and 

EL j⊆ . As a result of the new schedule, the amount of 

delay that will turn out from the rescheduling event k will 

be denoted by the decision variable kz .  

The assignment of trains to tracks is defined by: 

{ ∈∈∈=

otherwise,0

,Bj,Lk,Ptwhere

,ttrackuseskeventif,1

tr jj
t
k

 

In order to determine if more than one train meet at the 

same segment, the following decision variable is defined: 

{ <∈∈

≥∧≥

=

otherwise,0

k̂k,Bj,Lk̂,kwhere

),0aa()0dd(if,1

s
j

R

k̂

R
k

R
k

R

k̂

k̂k
 

When 1s
k̂k

= , we define sf and lf  to be the first and 

the last concurrent event in the segment, respectively. 

In some cases of disruption, event k may need to be 

rescheduled to occur after the event k̂ . Therefore, in 

order to determine the order of the events, the common 

scheduling disjunctive binary decision variables 
k̂k

γ and 

k̂k
λ  will be used: 

{ <∈∈=

otherwise,0

k̂k,Bj,Lk̂,kwhere

,k̂eventbeforeoccurskeventif,1

γ
jk̂k

{ <∈∈=

otherwise,0

k̂k,Bj,Lk̂,kwhere

,k̂eventbeforeoccurskeventif,1

λ
jk̂k

 

The complete model formulation is given by: 

Minimize ∑
∈Ti

ni
z                    (1) 

Subject to 

nk:Ti,Kk,da ii
R

1k
R
k ≠∈∈≤ +    (2) 

Ek,Δda k
R
k

R
k ∈+≥                      (3) 

nk:Ti,Kk,da ii
R

1k
R
k ≠∈∈= +     (4) 

Ek,Δda k
R
k

R
k ∈+=                        (5) 

Ek,dd S
k

R
k ∈≥                        (6) 

0d:Ek,dd S
k

A
k

R
k >∈=        (7) 

0a:Ek,aa A
k

A
k

R
k >∈=         (8) 

Ekzaa k
S
k

R
k ∈≤-           (9) 

Bj,Lk,1tr j

p

1t

t
k

j

∈∈=∑
=

                           (10) 
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Bj,Kk,Pt,Ptr ijj

f

fk

P

1t

t
k

l

s

j

∈∈∈≤∑∑
= =

            (11) 

k̂k:Bj,Pt,Lk̂,k

,γλ1trtr

jj

k̂kk̂k

t

k̂

t
k

<∈∈∈

+≤-+
(12) 

k̂k:Bj,Lk̂,k,1γλ jk̂kk̂k
<∈∈≤+          (13) 

0l,οο,k̂k:Bj,Lk̂,k

)γ1(MγHad

jkk̂j

k̂kk̂k

R
k

R

k̂

==<∈∈

--≥- j

     (14a)
 

1l,οο,k̂k:Bj,Lk̂,k

)γ1(MγHad

jkk̂j

k̂kk̂k

R
k

R

k̂

==<∈∈

--≥- j

     (14b) 

0l,οο,k̂k:Bj,Lk̂,k

,)λ1(MλHad

jkk̂j

k̂kk̂k

R

k̂

R
k

==<∈∈

--≥- j

     (15a)
 

1l,οο,k̂k:Bj,Lk̂,k

)λ1(MλHad

jkk̂j

k̂kk̂k

R

k̂

R
k

==<∈∈

--≥- j

     (15b) 

Ek,0z,a,d k
R
k

R

k̂
∈≥                  (16)

 

Bj,Pt,Lk},1,0{tr jj
t
k ∈∈∈∈                 (17) 

k̂k:Bj,Lk̂,k,}1,0{λ,γ jk̂kk̂k
<∈∈∈         (18) 

Bj,Pt,Lk},1,0{tr jj
t
k ∈∈∈∈                 (19) 

The objective function (1) calculates the minimum sum 

of delays experienced by all trains when they reach the 

final destination. Constraints (2)-(3) are constraints that 

govern the commuter trains. Constraint (2) indicates that 

a successor of a train event must wait until its predecessor 

has been completed, before it can start. The minimum 

running time for each train event is guaranteed by 

Constraint (3). Constraints (4)-(5) define the restriction 

posed for the prioritized train, Electric Train System 

(ETS). Constraint (4) ensures that each ETS train event 

must be directly succeeded by the next one, as far as the 

original schedule is concerned. Constraint (5) guarantees 

that the ETS trains should strictly depart and arrive, 

according to the planned scheduled.  

Constraint (6) indicates that the reschedule departure 

time should never be earlier than the original time 

scheduled. Constraints (7)-(8) force new departure and 

arrival time in the occurrence of disruption. Constraint (9) 

defines the total delay of all trains as the deviation 

between the rescheduled and the original arrival times. 

Constraint (10) restricts the utilization of track line as 

one train per track. Constraint (11) is introduced to ensure 

that the total concurrent events must not exceed the track 

capacity. Constraint (12) checks the order sequence 

between an event and its proceeding event, so as to 

ensure that it is either 
k̂k

γ or 
k̂k

λ  will take value of ‘1’ in 

Constraint (13).  

Constraints (14)-(15) impose a restriction for the 

minimum headway between two following trains. Two 

trains in the opposite direction are not considered in the 

constraint because although they are running or waiting at 

the same segment, these trains are never allowed to use 

the same track. Hence, imposing a minimum headway for 

them is unnecessary. It is either the set of Constraint (14) 

or Constraint (15) that will become active, depending on 

the value of 
k̂k

γ and 
k̂k

λ . In addition to this, the 

minimum headway jH equals iη2  for a station segment 

and iδ3  for a non-station segment, respectively. For 

these sets of constraint, M is a large positive integer. 

Finally, the constraints (16)-(17) define the domain of the 

decision variables. 

V. THE COMPUTATIONAL RESULTS 

The raw data obtained from a railway company in 

Malaysia has been used to serve as a sample data for the 

purpose of model testing. The railway line connecting 

some cities in the Klang Valley of Malaysia is presented 

in Fig. 2.  

 

Figure 2.  Rail network for a train services in the Klang Valley of 
Malaysia  

From the original train schedules and the location of 

the signaling switches along the rail track, the data of 

time and segment is extracted to form a time-space 

diagram as shown in Fig. 3.  

The entire data for the train service comprises of 120 

service trips which runs on 67 rail track segments 

involving 25 stations. There are hundreds of events that 

lead to a mathematical model with thousands of variable 

and constraint.  

In order to test the model and interpret the reschedule 

results, a preliminary experiment was run on a small 

sample of 9 segments, 5 stations and 5 running trains in 

up line and down line direction. Only Segments 8 and 

Segment 9 have four rail tracks while the rest are 

equipped with double track system. There are a total of 

38 events and 229 decision variables altogether, which 

technically produce a list of 290 model constraints. Two 

types of trains are selected as a sample in the experiment, 

namely the Komuter train and the higher prioritized train, 

ETS.  
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Figure 3.  A snapshot of the Malaysian train time-space diagram 

Each train is assumed to be able to fit on any track and 

a maximum of six-car train is assumed. The location of 

all trains in the network is known at all times. For 

simplicity, the speed of trains is assumed constant and the 

dwell time of the trains at stations is embedded in the 

event duration.  

The time scope is limited to 30 minutes and two 

sample problem cases were manually created to capture 

the rescheduling scenario. The cases were randomly 

selected based on the track capacity at the disruption site 

and the reaction of affected train towards maintaining the 

minimum headway. The mathematical model is solved 

using MATLAB R2011a. The computational tests were 

run on a 3.00GHz AMD Phenom Processor with 4Gb 

RAM. 

 

Figure 4.  Optimal rescheduling for Case 1 

Fig. 4 displays the movement of the five trains that 

take place in between segments, along the rail tracks. The 

vertical axis depicts the time while the horizontal axis 

shows the segment. Each line in the diagram represents a 

train, which is indicated by the number next to the line. 

Lines with positive gradient indicate the movement of 

train from segment 1 to segment 9. The lines with 

negative gradient indicate the opposite direction. Note 

that there are vertical lines at segment 1, 4, 6, 8 and 9, 

which imply that trains are dwelling for some time at 

stations.  

A. Problem Case 1 

Suppose Train 3 experiences a 9-minute delay at 

Segment 6. The dotted lines in Fig. 4 represents the 

optimal reschedule plan generated by the optimization 

model. In relation to this, Train 2 is forced to be delayed 

right from Segment 1 so as to meet the track capacity 

constraint at Segment 8. On the other hand, Train 4 is 

shifted as well to adhere to the headway restriction posed 

by the model. 

The optimum solution resulted from the model shows 

that the minimum delays experienced by Train 2, Train 3 

and Train 4 are 5 minutes, 9 minutes and 2 minutes, 

respectively. As a consequence, this has brought the 

objective function of total delay z to be 16 minutes. 

B. Problem Case 2 

 

Figure 5.  Optimal rescheduling for Case 2 

Now suppose Train 4 experiences a 6-minute delay at 

Segment 8. Fig. 5 illustrates the new reschedule plan for 

the affected trains. Once it has overcome the problem, it 

starts heading to its destination, maintaining its normal 

pattern of running, However, Train 2 takes a longer time 

from Segment 1 to reach to the next station, due to the 

model restrictions on minimum headway. As a result, the 

Train 2 has changed sequence with Train 1 along segment 

4 to segment 6, that changed the sequence. The 

computational result generated shows that the minimum 

delays incurred by Train 2 and Train 4 are 11 minutes and 
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6 minutes, respectively. To this end, the objective 

function yields the total delay z to be 17 minutes. 

From the two problem cases that have been analyzed, 

the MIP model has successfully generates the 

rescheduling timetable. The total service delay for each 

affected train is attainable, together with the list of all 

departure and arrival times for each event. The new 

rescheduling plan does make sense, considering the 

results in the aspects of track capacity and the minimum 

headway. In addition to this, as a prioritized train, Train 5 

which is an ETS, runs according to the planned schedule. 

However, some aspects have been disregarded in this 

experiment. The scope of data used in this experiment 

might be too small. A more complicated result might be 

obtained if more segments are covered, more trains are 

included and the time horizon is lengthened. The 

possibility of train overtaking the other is also neglected; 

while in practice, a train is allowed to overtake the 

damaged train at a segment loop. The model formulation 

also disregards the need for connecting trains. In some 

railway system, a train is forced to wait for other train 

arrival to connect their passengers to their final 

destination. Finally, the ability of the chosen software to 

process a large scale data may need to be confirmed, 

before the experiment is carried out. 

VI. THE COMPLEXITY OF THE MODEL 

As a preliminary experiment, this paper attempts to 

cover a small scale problem of railway rescheduling. 

Once the model is verified true, only then it can be run on 

a large scale data. This procedure must be implemented 

because railway rescheduling is a very complex task.  

Railway rescheduling involves real-time alteration of 

train schedules in a railway network which is highly 

interconnected. Mathematically, this is considered as a 

difficult, combinatorial and strongly constrained problem. 

The model’s constraints require a large number of hard 

(operational) constraints and soft (desirability) constraints 

and the complexity of problem increases with the number 

of decision variables and constraints. Modeling and 

solving this railway rescheduling problem is thus 

considered a highly complex task and an NP-hard 

problem.  

Train rescheduling model needs to be run at macro 

level of railway networks so as to meet the real-world 

application demands. The routing and scheduling tasks 

are very challenging because it normally involves large 

combinatorial optimization problems. In the early stage, it 

demands the ability to formulate the real problem into a 

mathematical representation, incorporating all the factors 

influencing the decision variables, not forgetting the 

constraints and uncertainties governing the problem. In 

later stage, it demands the ability to solve the problem 

and generate the feasible or optimal solution within a 

short time frame, using search method or exact method, 

whichever suits the model. 

The algorithm intends to solve railway traffic conflict 

as fast as possible so as to assist the dispatcher in the 

resolution process. Solution to conflicts may involve 

many combinations of stations, departure and arrival 

times, direction of routes and location of conflicts, 

especially when the disruption involves a train that 

interferes with other trains. Therefore, depending on the 

chosen solution for a conflict, optimal solutions are 

normally unattainable in large-scale and complex 

instances, besides the number of feasible solutions can be 

very large. 

VII. CONCLUSION AND FURTHER RESEARCH 

This paper presented a preliminary experiment done to a 

small scale railway system with the aim to minimize the 

total service delays. A modified MIP model for 

rescheduling has been used to be the tool in finding the 

optimal solution. By means of a base model, the main 

elements supporting the model construction have been 

discussed in detail, with some additional features being 

highlighted. Two problem cases were created and the 

MIP model is able to generate optimal solutions. 

For the ongoing research, our model will be tested in a 

large scale setting and evaluated in a more practical 

context. The aspects that have been disregarded earlier, 

will be given a greater concern. The analysis will also be 

looking at some other problem cases, possibly involving 

signaling issue or route clash with ETS. 

Heuristic computational methods using AMPL 

programming language and CPLEX Solver will next be 

implemented. The model is intended to produce 

quantifiable quick solution to the real-time rescheduling 

problem and offers service recovery strategies which help 

the railway services to maintain as an efficient and 

reliable mode of transportation.  

The work is part of the study that is conducted on train 

rescheduling model to cope with the railway service 

disruptions within Malaysia commuter rail system. With 

the modified mathematical model, the solution 

approaches to the mathematical model will next be 

presented in next research papers of our study. 
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