
Automatic Schedule Control for Distributed

Software Development in Cloud Computing

Environments

Chung Yung, Shao-Zong Chen, and Jen-Tsung Hsieh
Department of Computer Science and Information Engineering

National Dong Hwa University, Hualien, TAIWAN

Email: {yung@mail, m9721505@ems, 610021068@ems}.ndhu.edu.tw

Abstract—This paper proposes an extension of automatic

schedule control to the WebSD management model of

distributed software development in cloud computing

environments. Cloud computing environments provide

more flexibility than conventional computing environments.

In particular, platform as a service (PaaS) provides more

flexibility in application design, development testing,

deployment, hosting, team collaboration, web service and

database integration, scalability, and versioning. The

WebSD model is a new management model of distributed

software development for cloud computing environments.

However, WebSD does not include functionality for

schedule control. We design new operations and add into

the WebSD model such that the distributed software

development may be managed with automatic assistance in

schedule control. We call the extended model as SDot.

Inherited from WebSD, SDot also offers a common platform

for various roles involved in the distributed software

development, and SDot is also appropriate for the

management of distributed software development in cloud

computing environments. We present the application of

SDot to a practical software project as a case study to show

the effectiveness of SDot in schedule control for the

management of distributed software development.

Index Terms—schedule control, distributed software

development, software development management, cloud

computing environment.

I. INTRODUCTION

Overall speaking, the objective of software engineering

is to guarantee the delivery of high-quality software on

time and within budget [1]. In the past decade,

developing software systems with globally distributed

teams is popularly applied to a lot software projects [2].

With the development of software technology and the

rapid extension of application areas, the cost and schedule

of distributed software development may get out of

control easily if the projects are not managed with

intensive care [3].

Based on 54 works of distributed software

development published from 1998 to 2009, da Silva et al.

concluded that the strong evidence about the effect of

using the best practices, models, and tools in distributed

software development projects is still scarce in the

literature [4]. The ultimate goal of distributed software

development is fully using all the resources, including

computing devices and human resources, to achieve

flexibility, quality and cost down. On the other hand,

there exist several challenges in globally distributed

software development, such as formalization in

communication, formal change management, planning for

system integration, project monitoring across distributed

teams, standard distributed development tools, and

integrated management tools [5].

Cloud computing is not only a term that refers to data,

processing, or experiences that reside somewhere in the

cloud that we call as the internet. Nowadays, cloud

computing reforms the way how companies operate with

data and applications in the processes of inventing,

developing, deploying, scaling, updating, maintaining and

paying for resources that undergo the changes [6]-[8].

A cloud computing environment can be defined as a

computing environment that provides everything as a

service, including infrastructure as a service (IaaS),

platform as a service (PaaS), and software as a service

(SaaS). The software systems developed in cloud

computing environments suffer from the same problems

that plague the conventional distributed and parallel

software systems; they are complex to design, develop,

test, deploy, and manage [9]. While various cloud

services are either available or under development, the

industry calls for a new model of distributed software

development management that is specialized for cloud

computing environments [6], [10].

With such a background, Yung et al. propose WebSD,

which is a new management model of distributed

software development management for cloud computing

environments [6]. WebSD contributes in the following

aspects.

 WebSD simplifies the conventional hierarchical

architecture of distributed software development,

 WebSD extends conventional models to allow

outsourcing parts of the software development to

fellow companies, and

 WebSD provides various views to the distributed

software development for the roles involved,

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 39
doi: 10.12720/jiii.2.1.39-44

 Manuscript received June 10, 2013; revised August 27, 2013.

including project managers, software developers,

software testers, and software debuggers, to

cooperate in a common and open model.

However, WebSD does not include any specialized

functionality for schedule control, which motivates our

work presented in this paper.

We design new operations and add into the WebSD

model such that the distributed software development

may be managed with automatic assistance in schedule

control. We call the extended model as SDot. Inherited

from WebSD, SDot also offers a common platform for

various roles involved in the distributed software

development, and SDot is also appropriate for the

management of distributed software development in

cloud computing environments. We present the

application of SDot to a practical software project as a

case study to show the effectiveness of SDot in schedule

control for the management of distributed software

development.

This paper is organized as follows. The next section

briefly describes the WebSD model. Our new SDot

model is presented in section 3. Application of SDot to a

practical case is described in section 4. And at last is a

brief conclusion.

II. THE WEBSD MODEL

In this section, we briefly describe the WebSD model,

which is a web-based management model of distributed

software development for cloud computing environments

[6].

In the WebSD model, a software project of distributed

development is described as a well-designed set of

modules, which are units of encapsulation. The life-cycle

for developing a module in a software system is defined

by the state transition diagram shown in Fig. 1.

Figure 1. The state transition diagram of the WebSD model

As an example, the state of a module is initially A.

After it is assigned to a group for programming, the state

goes to B. Once the assigned group accepts the job of

programming, the state goes to C. When the group

reports the finish of programming, the state goes to D.

Then, it is assigned for testing and the state goes to E.

Once the assigned group accepts the job of testing, the

state goes to F. When the group reports the finish of

testing and no bug is found, the state goes to G. And then,

the project manager performs the integration tests. If it

passes the integration tests, the state goes to L and the

development of the module is complete.

Extended from the definition of the life-cycle of

developing a module, they define the status of a software

project using distributed development as follows.

Definition (Status of a software project using

distributed development, P)

Given a module set M of k modules and a software

project consisting of the k modules, the status of the

project P is defined as

P = {pi|1 ≤ i ≤ k},

where each pi is a pair ⟨ mi, si⟩ , mi ∈ M = {m1, ..., mk},

and si ∈ S = {A, B, C, D, E, F, G, H, I, J, K, L}.

One of the advantages of the WebSD model is that

with the definition of the status of a software project

using distributed development, we may derive and keep

record of the progress of distributed software

development in an official manner.

III. AUTOMATIC SCHEDULE CONTROL

This section proposes an extension of automatic

schedule control to the WebSD management model of

distributed software development for cloud computing

environments. We call the extended model as SDot.

The primary operations of distributed software

development modeled in SDot are listed in Fig. 2. We

briefly describe each operation as follows.
1.1. Assignp: A project manager assigns the job of programming a

module to a group.

1.2. Acceptp: A group accepts the job of programming a module.

1.3. Finishp: A group finishes the job of programming a module.

1.4. Rejectp: A group rejects the job of programming a module.

1.5. Withdrawp: A group withdraws the acceptance of programming

a module.

1.6. Expirep: The job of programming a module gets expired.

1.7. Extendp: A group applies for an extension in programming a

module.

1.8. Approvep: A project manager approves the extension in

programming a module.

2.1. Assignu: A project manager assigns the job of testing a module

to a group.

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 40

2.2. Acceptu: A group accepts the job of testing a module.

2.3. Finishu: A group finishes the job of testing a module.

2.4. Rejectu: A group rejects the job of testing a module.

2.5. Withdrawu: A group withdraws the acceptance of testing a

module.

2.6. Expireu: The job of testing a module gets expired.

2.7. Extendu: A group applies for an extension in testing a module.

2.8. Approveu: A project manager approves the extension in testing a

module.

2.9. Reportu: A group reports bugs after testing a module.

3.1. Assigns: A project manager assigns the job of integration testing

for a module to a group.

3.2. Accepts: A group accepts the job of integration testing for a

module.

3.3. Finishs: A group finishes the job of integration testing for a

module.

3.4. Rejects: A group rejects the job of integration testing for a

module.

3.5. Withdraws: A group withdraws the acceptance of integration

testing for a module.

3.6. Expires: The job of integration testing for a module gets expired.

3.7. Extends: A group applies for an extension in integration testing

for a module.

3.8. Approves: A project manager approves the extension in

integration testing for a module.

3.9. Reports: A group reports bugs after integration testing for a

module.

4.1. Assignd: A project manager assigns the job of debugging a

module to a group.

4.2. Acceptd: A group accepts the job of debugging a module.

4.3. Finishd: A group finishes the job of debugging a module.

4.4. Rejectd: A group rejects the job of debugging a module.

4.5. Withdrawd: A group withdraws the acceptance of debugging a

module.

4.6. Expired: The job of debugging a module gets expired.

4.7. Extendd: A group applies for an extension in debugging a

module.

4.8. Approved: A project manager approves the extension in

debugging a module.

PHASE OPERATION

P1 Programming 1.1 Assignp

1.2 Acceptp

1.3 Finishp

1.4 Rejectp

1.5 Withdrawp

1.6 Expirep

1.7 Extendp

1.8 Approvep

P2 Unit Testing 2.1. Assignu

2.2. Acceptu

2.3. Finishu

2.4. Rejectu

2.5. Withdrawu

2.6. Expireu

2.7. Extendu

2.8. Approveu

2.9. Reportu

P3 Integration Testing 3.1. Assigns

3.2. Accepts

3.3. Finishs

3.4. Rejects

3.5. Withdraws

3.6. Expires

3.7. Extends

3.8. Approves

3.9. Reports

P4 Debugging 4.1. Assignd

4.2. Acceptd

4.3. Finishd

4.4. Rejectd

4.5. Withdrawd

4.6. Expired

4.7. Extendd

4.8. Approved

Figure 2. Primary operations in distributed software development

Extended from the WebSD model, the life-cycle of a

module in the distributed software development is

defined by a state transition diagram shown in Fig. 3.

In the design of SDot, we note the following:

 SDot is so flexible that it allows a module in the

software be developed and tested by a group at

different locations.

 In SDot, a group in the globally virtual team may

get only the information involved with the group.
 In SDot, the project manager has the freedom of

dynamic adjustment in distributing the job of

programming, testing, or debugging a module to a

group of his/her choice.
 SDot can be easily applied to the management of

practical projects with distributed software

development.

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 41

Figure 3. The state transition diagram of the SDot model

IV. APPLICATION OF SDOT TO A PRACTICAL PROJECT

For a validation, we apply the SDot model to a

practical project called ConsMan. ConsMan is a project

of distributed software development for building a web-

based distributed information management system. The

ConsMan project was executed between 2006 and 2007

for an energy and power company in Taiwan that our

second author works with. Note that in this case, the

SDot model is applied after the project is closed, based on

the documentation kept during the execution of the

project. While the whole details of ConsMan are

available, simplification and adaption are applied for the

purpose of clarity in presentation. In this section, we

only show the top-level activities in executing ConsMan.

The ConsMan project with three top-level modules is

developed by a virtual team consisting of five groups, of

which one group is an in-house management group (g1:

TWPCMan), two groups are outsourced programming

groups of agents and consultants (g2: TWAC, and g3:

MLAC), and the other two groups are off-site testing

groups (g4: TWPCN, and g5: TWPCS).

Here, we briefly describe the progress in developing

the top-level modules as follows. ConsMan has a global

virtual team consisted of 5 groups (G = {g1, g2, g3, g4,

g5}), of which g1 is the project management group; g2 and

g3 are the programming and debugging groups; g4 and g5

are the testing groups. The ConsMan project consists of

3 top-level modules (M = {m1, m2, m3}), which are

developed in a distributed way with the following steps:

1) On day d1, g1 performs Assignp(m1, g2, d2),

Assignp(m2, g3, d2), and Assignp(m3, g3, d2). g2

performs Rejectp(m1). g3 performs Acceptp(m2) and

Acceptp(m3).

2) On day d2, g1 performs Assignp(m1, g2, d3). g2

performs Acceptp(m1). g3 performs Withdrawp(m3).

The system automatically performs Expirep(m2).

3) On day d3, g1 performs Assignp(m2, g2, d4) and

Assignp(m3, g3, d4). g2 performs Finishp(m1) and

Acceptp(m2). g3 performs Acceptp(m3).

4) On day d4, g1 performs Assignu(m1, g5, d5). g3

performs Finishp(m2) and Finishp(m3). g5 performs

Acceptu(m1).

5) On day d5, g1 performs Assignu(m2, g5, d6) and

Assignu(m3, g5, d6). g5 performs Reportu(m1),

Acceptu(m2), and Rejectu(m3).

6) On day d6, g1 performs Assignd(m1, g5, d8) and

Assignu(m3, g4, d7). g4 performs Rejectd(m1) and

Acceptu(m3). g5 performs Extendu(m2, d8).

7) On day d7, g1 performs Assignd(m1, g3, d10) and

Approveu(m2, d8). g3 performs Acceptd(m1). g4

performs Withdrawu(m2).

8) On day d8, g1 performs Assignu(m3, g5, d9). g5

performs Finishu(m2) and Acceptu(m3).

9) On day d9, g5 performs Finishu(m3).

10) On day d10, g3 performs Extendd(m1, d12).

11) On day d11, g1 performs Approved(m1, d12).

12) On day d12, g3 performs Finishd(m1).

13) On day d13, g1 performs Assignu(m1, g5, d14). g5

performs Acceptu(m1).

14) On day d14, g5 performs Finishu(m1).

15) On day d15, g1 performs Assigns(m1, g4, d22),

Assigns(m2, g4, d22), and Assigns(m3, g4, d22). g4

performs Accepts(m1), Accepts(m2), and Accepts(m3).

16) On day d16, g4 performs Reports(m1).

17) On day d17, g1 performs Assignd(m1, g3, d18). g3

performs Acceptd(m1).

18) On day d18, g3 performs Finishd (m1).

19) On day d19, g1 performs Assignu(m1, g5, d20). g5

performs Acceptu(m1).

20) On day d20, g5 performs Finishu(m1).

21) On day d21, g1 performs Assigns(m1, g4, d22). g4

performs Accepts(m1).

22) On day d22, g4 performs Finishs(m1), Finishs(m2), and

Finishs(m3).

As such, the ConsMan project is complete on day d22.

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 42

The complete record of applying the SDot model to the top-level modules of ConsMan is shown in Fig. 4.

Module m1 m2 m3

States (d1) A A A

Operations
g1: Assignp(m1, g2, d2)

g2: Rejectp(m1)

g1: Assignp(m2, g2, d2)

g3: Acceptp(m2)

g1: Assignp(m3, g3, d2)

g3: Acceptp(m3)

States (d2) A C C

Operations
g1: Assignp(m1, g2, d3)

g2: Acceptp(m1)
S: Expirep(m2) g3: Withdrawp(m3)

States (d3) C A A

Operations g2: Finishp(m1)
g1: Assignp(m2, g2, d4)

g2: Acceptp(m2)

g1: Assignp(m3, g3, d4)

g3: Acceptp(m3)

States (d4) E C C

Operations
g1: Assignu(m1, g5, d5)

g5: Acceptu(m1)
g3: Finishp(m2) g3: Finishp(m3)

States (d5) G E E

Operations g5: Reportu(m1)
g1: Assignu(m2, g5, d6)

g5: Acceptu(m2)

g1: Assignu(m3, g5, d6)

g5: Rejectu(m3)

States (d6) I G E

Operations
g1: Assignd(m1, g2, d7)

g4: Rejectd(m1)
g5: Extendu(m2, d8)

g1: Assignu(m3, g4, d7)

g4: Acceptu(m3)

States (d7) I H G

Operations
g1: Assignd(m1, g3, d10)

g3: Acceptd(m1)
g1: Approveu(m2, d8) g4: Withdrawu(m3)

States (d8) K G E

Operations g5: Finishu(m2)
g1: Assignu(m3, g5, d9)

g5: Acceptu(m3)

States (d9) K M G

Operations g5: Finishu(m3)

States (d10) K M M

Operations g3: Extendd(m1, d12)

States (d11) L M M

Operations g1: Approved(m1, d12)

States (d12) K M M

Operations g3: Finishd(m1)

States (d13) E M M

Operations
g1: Assignu(m1, g5, d14)

g5: Acceptu(m1)

States (d14) G M M

Operations g5: Finishu(m1)

States (d15) M M M

Operations
g1: Assigns(m1, g4, d22)

g4: Accepts(m1)

g1: Assigns(m2, g4, d22)

g4: Accepts(m2)

g1: Assigns(m3, g4, d22)

g4: Accepts(m3)

States (d16) O O O

Operations g4: Reports(m1)

States (d17) I O O

Operations
g1: Assignd(m1, g3, d18)

g3: Acceptd(m1)

States (d18) K O O

Operations g3: Finishd(m1)

States (d19) E O O

Operations
g1: Assignu(m1, g5, d20)

g5: Acceptu(m1)

States (d20) G O O

Operations g5: Finishu(m1)

States (d21) M O O

Operations
g1: Assigns(m1, g4, d22)

g4: Accepts(m1)

States (d22) O O O

Operations g4: Finishs(m1) g4: Finishs(m2) g4: Finishs(m3)

States (final) Q Q Q

Figure 4. Applying the SDot model to keep record of the progress in the ConsMan project

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 43

V. CONCLUSION

In this paper, we present an extension of automatic

schedule control to the WebSD management model of

distributed software development for cloud computing

environments. We call the extended model as SDot. We

define the life-cycle of a module in the distributed

software development using a state transition diagram.

For validation, we include the application of the SDot

model to the ConsMan project.

We are aware of that the SDot model only provides a

simple and clear view to the software projects of

distributed development for the project managers, with a

special purpose of schedule control. For a sophisticated

schedule control of software development, the managers

are suggested to refer to various schedule control

techniques for software project management [1], [3].

ACKNOWLEDGMENT

This work is supported in part by the National Science

Council under grand number NSC 100-2218-E-259-002-

MY3.

REFERENCES

[1] X. Wang, C. Wu, and L. Ma, “Software project schedule variance

prediction using bayesian network,” in Proc. IEEE International

Conference on Advanced Management Science, vol. 2, July 2010,

pp. 26–30.

[2] A. Piri, “Challenges of globally distributed software development

analysis of problems related to social processes and group
relations,” in Proc. IEEE International Conference on Global

Software Engineering, August 2008, pp. 264–268.
[3] Y. Sun and R. Cui, “Workload point system based on project

schedule optimization,” in Proc. International Conference on

Management and Service Science, September 2009, pp. 1–4.
[4]

“Challenges and solutions in distributed software development
project management: a systematic literature review,” in Proc. 5th

IEEE International Conference on Global Software Engineering,

August 2010, pp. 87–96.
[5] I. S. Wiese and E. H. M. Huzita, “IMART: An Interoperability

model for artifacts of distributed software development
environments,” in Proc. International Conference on Global

Software Engineering, October 2006, pp. 255–256.

[6] C. Yung, S.-Z. Chen, S.-C. Wu, J.-T. Hsieh, and K.-J. Peng, “A

Web-based model of distributed software development

management for cloud computing environments,” GSTF Journal
of Computing, vol. 2, no. 2, pp. 1–7, June 2012.

[7] V. Matveev, “Platform as a service–new opportunities for
software development companies,” Master’s thesis, Department of

Information Technology, Lappeenranta University of Technology,

Finland, May 2010.
[8] Y. C. Zhou, X. P. Liu, X. N. Wang, L. Xue, X. X. Liang, and S.

Liang, “Business process centric platform-as-a-service model and
technologies for cloud enabled industry solutions,” in Proc. Third

IEEE International Conference on Cloud Computing, July 2010,

pp. 534–537.
[9] J. S. Rellermeyer, M. Duller, and G. Alonso, “Engineering the

cloud from software modules,” in Proc. ICSE Workshop on
Software Engineering Challenges of Cloud Computing, May 2009,

pp. 32–37.

[10] K. A. Johnston and K. Rosin, “Global virtual teams: How to
manage them,” in Proc. International Conference on Computer

and Management, May 2011, pp. 1–4.

Chung Yung received PhD degree in Computer

Science from New York University (USA) in
1999 and BSc degree in Computer Science and

Information Engineering from National Chiao
Tung University (Taiwan) in 1988. He has been

with the Department of Computer Science and

Information Engineering of National Dong Hwa
University (Taiwan) since 2000. He was a part-

time senior consultant and project manager within
the intelligent digital content industry between 2003 and 2007. He is

currently leading Compiler Technology and Application Laboratory in

National Dong Hwa University. His research interests include semantic
methods of program analysis, optimizations for cloud software systems,

compiler supported software engineering, and programming languages.

Shao-Zong Chen is currently with Taiwan Power

Company as a senior software engineer since 2002.
He is working part-time for his master degree in

Computer Science and Information Engineering at
Compiler and Technology Application Laboratory

of National Dong Hwa University, Taiwan. He

received BSc degree in Computer Science and
Information Engineering from Tamkang

University, Taiwan in 1992. His research interests
include software project management, program analysis and distributed

software development in cloud computing environments.

Jen-Tsung Hsieh is working for a master degree in
Computer Science and Information Engineering in

National Dong Hwa University (Taiwan). He

received BSc degree in Computer Science and
Information Engineering from University of Kang

Ning (Taiwan) in 2007. His research interests
include distributed software development and

efficient implementation of programming

languages.

Journal of Industrial and Intelligent Information Vol. 2, No. 1, March 2014

©2014 Engineering and Technology Publishing 44

F. Q. B. C. C. Franca, and R. Prikladinicki, da Silva, C. Costa, A.

